Ковариация случайных величин — различия между версиями
(→Вычисление) |
Proshev (обсуждение | вклад) |
||
Строка 93: | Строка 93: | ||
*[http://ru.wikipedia.org/wiki/%D0%9A%D0%BE%D0%B2%D0%B0%D1%80%D0%B8%D0%B0%D1%86%D0%B8%D1%8F Википедия] | *[http://ru.wikipedia.org/wiki/%D0%9A%D0%BE%D0%B2%D0%B0%D1%80%D0%B8%D0%B0%D1%86%D0%B8%D1%8F Википедия] | ||
*[http://ru.wikipedia.org/wiki/%D0%9A%D0%BE%D1%80%D1%80%D0%B5%D0%BB%D1%8F%D1%86%D0%B8%D1%8F#.D0.9F.D0.B0.D1.80.D0.B0.D0.BC.D0.B5.D1.82.D1.80.D0.B8.D1.87.D0.B5.D1.81.D0.BA.D0.B8.D0.B5_.D0.BF.D0.BE.D0.BA.D0.B0.D0.B7.D0.B0.D1.82.D0.B5.D0.BB.D0.B8_.D0.BA.D0.BE.D1.80.D1.80.D0.B5.D0.BB.D1.8F.D1.86.D0.B8.D0.B8 Википедия (доказательство неравенства Коши — Буняковского)] | *[http://ru.wikipedia.org/wiki/%D0%9A%D0%BE%D1%80%D1%80%D0%B5%D0%BB%D1%8F%D1%86%D0%B8%D1%8F#.D0.9F.D0.B0.D1.80.D0.B0.D0.BC.D0.B5.D1.82.D1.80.D0.B8.D1.87.D0.B5.D1.81.D0.BA.D0.B8.D0.B5_.D0.BF.D0.BE.D0.BA.D0.B0.D0.B7.D0.B0.D1.82.D0.B5.D0.BB.D0.B8_.D0.BA.D0.BE.D1.80.D1.80.D0.B5.D0.BB.D1.8F.D1.86.D0.B8.D0.B8 Википедия (доказательство неравенства Коши — Буняковского)] | ||
+ | |||
+ | [[Категория:Дискретная математика и алгоритмы]] | ||
+ | |||
+ | [[Категория: Теория вероятности ]] |
Версия 23:37, 16 января 2012
Определение: |
Ковариация случайных величин: пусть
| — две случайные величины, определённые на одном и том же вероятностном пространстве. Тогда их ковариация определяется следующим образом:
Вычисление
В силу линейности математического ожидания, ковариация может быть записана как:
Итого,
Свойства ковариации
- Ковариация симметрична:
- .
- Пусть случайные величины, а их две произвольные линейные комбинации. Тогда
- .
- Ковариация случайной величины с собой равна её дисперсии:
- .
- Если независимые случайные величины, то
- .
Обратное, вообще говоря, неверно.
Неравенство Коши — Буняковского
Теорема (неравенство Коши — Буняковского): |
Если принять в качестве скалярного произведения двух случайных величин ковариацию , то квадрат нормы случайной величины будет равен дисперсии и Неравенство Коши-Буняковского запишется в виде:
|
Доказательство: |
Запишем неравенство в другом виде:
Введём в рассмотрение случайную величину (где — среднеквадратическое отклонение) и найдём её дисперсию . Выполнив выкладки получим:
Любая дисперсия неотрицательна, поэтому
Отсюда
Введя случайную величину , аналогично
Объединив полученные неравенства имеем
Или
Итак,
А значит, верно и исходное неравенство: |