Теорема о поглощении — различия между версиями
Whiplash (обсуждение | вклад) |
Proshev (обсуждение | вклад) |
||
Строка 64: | Строка 64: | ||
В итоге получаем, что непоглощающие состояния стремятся к <tex>0</tex>, а значит поглощающие в итоге приходят к <tex>1</tex>, т.е. цепь приходит в поглощающее состояние. | В итоге получаем, что непоглощающие состояния стремятся к <tex>0</tex>, а значит поглощающие в итоге приходят к <tex>1</tex>, т.е. цепь приходит в поглощающее состояние. | ||
}} | }} | ||
+ | |||
+ | [[Категория:Дискретная математика и алгоритмы]] | ||
[[Категория: Марковские цепи ]] | [[Категория: Марковские цепи ]] |
Версия 23:41, 16 января 2012
Определение: |
Поглощающая цепь (absorbing chain) - Марковская цепь такая, что из любого состояния достижимо поглощающее. Поглощающее состояние - состояние цепи, войдя в которое однажды, нельзя выйти. |
Теорема (о поглощении): |
Если цепь поглощающая, то с вероятностью, равной 1, она перейдет в поглощающее состояние. |
Доказательство: |
Пусть матрица переходов, где элемент равен вероятности перехода из -го состояния в -ое. Она будет выглядеть как матрица из 4-х блоков, где - непоглощающие состояния, а и - поглощающие (т.к. цепь поглощающая, то из любого непоглощающего можно попасть в поглощающее). - единичная матрица. -
. Произведение единичной матрицы на саму себя есть единичная матрица ( ); - некоторые значения (не важны для доказательства теоремы, т.к. чтобы доказать теорему достаточно доказать, что непоглощающие состояния стремятся к 0).Продолжив вычисления, получим, что имеет такой вид: .Докажем, что , при .
Тогда получаем: В итоге получаем, что непоглощающие состояния стремятся к , а значит поглощающие в итоге приходят к , т.е. цепь приходит в поглощающее состояние. |