Эргодическая марковская цепь — различия между версиями
| Строка 5: | Строка 5: | ||
Эргодические цепи могут быть [[Регулярная марковская цепь|регулярными]] или '''циклическими'''. Циклические цепи отличаются от регулярных тем, что в процессе переходов через определенное количество шагов (цикл) происходит возврат в какое-либо состояние. Регулярные цепи этим свойством не обладают.  | Эргодические цепи могут быть [[Регулярная марковская цепь|регулярными]] или '''циклическими'''. Циклические цепи отличаются от регулярных тем, что в процессе переходов через определенное количество шагов (цикл) происходит возврат в какое-либо состояние. Регулярные цепи этим свойством не обладают.  | ||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
==Стационарный режим==  | ==Стационарный режим==  | ||
| Строка 20: | Строка 15: | ||
<tex>\pi_{i} = \sum\limits_{j=1}^{n}(\pi_{j} \times p_{ji})</tex>, где <tex>i = 1,2,...,n</tex>  | <tex>\pi_{i} = \sum\limits_{j=1}^{n}(\pi_{j} \times p_{ji})</tex>, где <tex>i = 1,2,...,n</tex>  | ||
| − | Можно заметить, что так как все свободные члены равны нулю, система имеет бесконечное число решений. Однако, у нас есть дополнительные условия на решение: <tex>\sum\limits_{j=1}^{n}\pi_{i} = 1</tex> и <tex> \pi_i   | + | Можно заметить, что так как все свободные члены равны нулю, система имеет бесконечное число решений. Однако, у нас есть дополнительные условия на решение: <tex>\sum\limits_{j=1}^{n}\pi_{i} = 1</tex> и <tex> \pi_i \ge 0 </tex>. Следующая теорема утверждает единственность решения такой системы.  | 
==Основная теорема об эргодических распределениях==  | ==Основная теорема об эргодических распределениях==  | ||
| Строка 27: | Строка 22: | ||
|about=Основная теорема об эргодических распределениях  | |about=Основная теорема об эргодических распределениях  | ||
|statement=  | |statement=  | ||
| − | + | Для эргодической марковской цепи эргодическое распределение <tex>\mathbf{\pi}</tex> является единственным решением системы:    | |
| − | + | :<tex>\sum\limits_{i=0}^{\infty} \pi_i = 1,\; \pi_j \ge 0,\; \pi_j = \sum\limits_{i=0}^{\infty} \pi_i\, p_{ij},\quad \, j\in \mathbb{N}</tex>.  | |
| − | + | }}  | |
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | :<tex>\sum\limits_{i=0}^{\infty} \pi_i = 1,\; \pi_j \ge 0,\; \pi_j = \sum\limits_{i=0}^{\infty} \pi_i\, p_{ij},\quad \, j\in \mathbb{N}</tex>.}}  | ||
| Строка 52: | Строка 32: | ||
Рассмотрим матрицу, следующего вида: <tex>p_{ij}=0.5, i,j=1,2</tex>. Такая матрица является стохастической, а, значит, корректно определяет марковскую цепь. Такая цепь является эргодической, так как существует эргодическое распределение <tex>\pi = (0.5,0.5)^{\top}</tex>, такое что <tex>\lim\limits_{n \to \infty} p_{ij}^{(n)} = \pi_j, i=1,2</tex>.  | Рассмотрим матрицу, следующего вида: <tex>p_{ij}=0.5, i,j=1,2</tex>. Такая матрица является стохастической, а, значит, корректно определяет марковскую цепь. Такая цепь является эргодической, так как существует эргодическое распределение <tex>\pi = (0.5,0.5)^{\top}</tex>, такое что <tex>\lim\limits_{n \to \infty} p_{ij}^{(n)} = \pi_j, i=1,2</tex>.  | ||
| − | |||
| − | |||
| − | |||
| − | |||
==Ссылки==  | ==Ссылки==  | ||
Версия 06:03, 17 января 2012
| Определение: | 
| Эргодическая марковская цепь — марковская цепь, целиком состоящая из одного эргодического класса. | 
Эргодические цепи могут быть регулярными или циклическими. Циклические цепи отличаются от регулярных тем, что в процессе переходов через определенное количество шагов (цикл) происходит возврат в какое-либо состояние. Регулярные цепи этим свойством не обладают.
Содержание
Стационарный режим
Эргодические марковские цепи описываются сильно связным графом. Это означает, что в такой системе возможен переход из любого состояния в любое состояние за конечное число шагов.
Для эргодических цепей при достаточно большом времени функционирования () наступает стационарный режим, при котором вероятности состояний системы не зависят от времени и не зависят от распределения вероятностей в начальный момент времени, т.е. .
Для определения стационарных вероятностей нахождения системы в состоянии нужно составить систему линейных однородных алгебраических уравнений с неизвестными:
, где
Можно заметить, что так как все свободные члены равны нулю, система имеет бесконечное число решений. Однако, у нас есть дополнительные условия на решение: и . Следующая теорема утверждает единственность решения такой системы.
Основная теорема об эргодических распределениях
| Теорема (Основная теорема об эргодических распределениях): | 
Для эргодической марковской цепи эргодическое распределение  является единственным решением системы: 
 
  | 
Пример
Рассмотрим эксперимент по бросанию честной монеты. Тогда соответствующая этому эксперименту марковская цепь будет иметь 2 состояния. Состояние меняется на противоположное, при бросании монеты, с вероятностью .
Рассмотрим матрицу, следующего вида: . Такая матрица является стохастической, а, значит, корректно определяет марковскую цепь. Такая цепь является эргодической, так как существует эргодическое распределение , такое что .
Ссылки
Литература
Дж. Кемени, Дж. Снелл "Конечные цепи Маркова" - Издательство "Наука", 1970 г - 129 c.