Дерево, эквивалентные определения — различия между версиями
| Vasin (обсуждение | вклад) | Vasin (обсуждение | вклад)  | ||
| Строка 33: | Строка 33: | ||
| * <tex> 3 \Rightarrow 4 </tex> Очевидно, что если граф связен и ребер на одно меньше, чем вершин, то он ацикличен. Преположим, что у нас есть p вершин, и мы добавляем ребра. Если мы добавили ребро для получения цикла, то добавили второй путь между парой вершин, а значит нам не хватит его на добавление вершины и мы получим не связный граф, что противоречит условию. | * <tex> 3 \Rightarrow 4 </tex> Очевидно, что если граф связен и ребер на одно меньше, чем вершин, то он ацикличен. Преположим, что у нас есть p вершин, и мы добавляем ребра. Если мы добавили ребро для получения цикла, то добавили второй путь между парой вершин, а значит нам не хватит его на добавление вершины и мы получим не связный граф, что противоречит условию. | ||
| − | * <tex> 4 \Rightarrow 5 </tex> <tex>G</tex> — ациклический граф, значит каждая компонента связности графа является деревом. Так как в каждой из них вершин на единицу больше чем ребер, то <tex> p = q + k </tex>, где <tex>k</tex> — число компонент связности. Поскольку <tex> p = q + k </tex>, то <tex> k = 1 </tex>, а значит <tex>G</tex> — связен. Таким образом наш граф — дерево, у которого между любой парой вершин есть единственный простой путь. Очевидно, при добавлении ребра появится второй путь между парой вершин, то есть мы получим цикл. | + | * <tex> 4 \Rightarrow 5 </tex> <tex>G</tex> — ациклический граф, значит каждая компонента связности графа является деревом. Так как в каждой из них вершин на единицу больше чем ребер, то <tex> p = q + k </tex>, где <tex>k</tex> — число [[Отношение связности, компоненты связности|компонент связности]]. Поскольку <tex> p = q + k </tex>, то <tex> k = 1 </tex>, а значит <tex>G</tex> — связен. Таким образом наш граф — дерево, у которого между любой парой вершин есть единственный простой путь. Очевидно, при добавлении ребра появится второй путь между парой вершин, то есть мы получим цикл. | 
| * <tex> 5 \Rightarrow 6 </tex> Поскольку <tex> K_p </tex> для <tex> p \ge 3 </tex> содержит простой цикл, то <tex>G</tex> не может им являться. <tex>G</tex> связен,  так как в ином случае можно было бы добавить ребро так, что граф остался бы ациклическим. | * <tex> 5 \Rightarrow 6 </tex> Поскольку <tex> K_p </tex> для <tex> p \ge 3 </tex> содержит простой цикл, то <tex>G</tex> не может им являться. <tex>G</tex> связен,  так как в ином случае можно было бы добавить ребро так, что граф остался бы ациклическим. | ||
Версия 08:51, 17 января 2012
| Определение: | 
| Дерево — связный ациклический граф. | 
| Определение: | 
| Лес — граф, являющийся набором непересекающихся деревьев. | 
| Теорема: | 
| Для графа G эквивалентны следующие утверждения:
 
 | 
| Доказательство: | 
| 
 
 
 
 
 
 
 | 
Литература
- Харари Ф. Теория графов. /пер. с англ. — изд. 2-е — М.: Едиториал УРСС, 2003. — 296 с. — ISBN 5-354-00301-6
- Википедия — свободная энциклопедия


