Дерево, эквивалентные определения — различия между версиями
Vasin (обсуждение | вклад) |
Vasin (обсуждение | вклад) |
||
Строка 33: | Строка 33: | ||
* <tex> 3 \Rightarrow 4 </tex> Очевидно, что если граф связен и ребер на одно меньше, чем вершин, то он ацикличен. Преположим, что у нас есть p вершин, и мы добавляем ребра. Если мы добавили ребро для получения цикла, то добавили второй путь между парой вершин, а значит нам не хватит его на добавление вершины и мы получим не связный граф, что противоречит условию. | * <tex> 3 \Rightarrow 4 </tex> Очевидно, что если граф связен и ребер на одно меньше, чем вершин, то он ацикличен. Преположим, что у нас есть p вершин, и мы добавляем ребра. Если мы добавили ребро для получения цикла, то добавили второй путь между парой вершин, а значит нам не хватит его на добавление вершины и мы получим не связный граф, что противоречит условию. | ||
− | * <tex> 4 \Rightarrow 5 </tex> <tex>G</tex> — ациклический граф, значит каждая компонента связности графа является деревом. Так как в каждой из них вершин на единицу больше чем ребер, то <tex> p = q + k </tex>, где <tex>k</tex> — число компонент связности. Поскольку <tex> p = q + k </tex>, то <tex> k = 1 </tex>, а значит <tex>G</tex> — связен. Таким образом наш граф — дерево, у которого между любой парой вершин есть единственный простой путь. Очевидно, при добавлении ребра появится второй путь между парой вершин, то есть мы получим цикл. | + | * <tex> 4 \Rightarrow 5 </tex> <tex>G</tex> — ациклический граф, значит каждая компонента связности графа является деревом. Так как в каждой из них вершин на единицу больше чем ребер, то <tex> p = q + k </tex>, где <tex>k</tex> — число [[Отношение связности, компоненты связности|компонент связности]]. Поскольку <tex> p = q + k </tex>, то <tex> k = 1 </tex>, а значит <tex>G</tex> — связен. Таким образом наш граф — дерево, у которого между любой парой вершин есть единственный простой путь. Очевидно, при добавлении ребра появится второй путь между парой вершин, то есть мы получим цикл. |
* <tex> 5 \Rightarrow 6 </tex> Поскольку <tex> K_p </tex> для <tex> p \ge 3 </tex> содержит простой цикл, то <tex>G</tex> не может им являться. <tex>G</tex> связен, так как в ином случае можно было бы добавить ребро так, что граф остался бы ациклическим. | * <tex> 5 \Rightarrow 6 </tex> Поскольку <tex> K_p </tex> для <tex> p \ge 3 </tex> содержит простой цикл, то <tex>G</tex> не может им являться. <tex>G</tex> связен, так как в ином случае можно было бы добавить ребро так, что граф остался бы ациклическим. |
Версия 08:51, 17 января 2012
Определение: |
Дерево — связный ациклический граф. |
Определение: |
Лес — граф, являющийся набором непересекающихся деревьев. |
Теорема: |
Для графа G эквивалентны следующие утверждения:
|
Доказательство: |
|
Литература
- Харари Ф. Теория графов. /пер. с англ. — изд. 2-е — М.: Едиториал УРСС, 2003. — 296 с. — ISBN 5-354-00301-6
- Википедия — свободная энциклопедия