Цепные дроби как приближение к числу — различия между версиями
(→Теорема 4) |
|||
Строка 27: | Строка 27: | ||
}} | }} | ||
− | == | + | ==Лемма1== |
− | + | {{Лемма | |
− | + | |statement= | |
Любую конечную цепную дробь <math><a_0, a_1, a_2,\cdots, a_n></math> с чётным(нечётным) числом подходящих дробей можно представить в виде эквивалентной конечной цепной дроби с нечётным(чётным) числом подходящих дробей. | Любую конечную цепную дробь <math><a_0, a_1, a_2,\cdots, a_n></math> с чётным(нечётным) числом подходящих дробей можно представить в виде эквивалентной конечной цепной дроби с нечётным(чётным) числом подходящих дробей. | ||
− | + | |proof= | |
Если <math>a_n \geqslant 2</math> : <math><a_0, a_1, a_2,\cdots,a_n> = <a_0, a_1, a_2,\cdots,a_n-1,1></math>. Если <math>a_n = 1</math> : <math><a_0, a_1, a_2,\cdots,a_{n-1}, 1> = <a_0, a_1, a_2,\cdots,a_{n-1} + 1></math>. | Если <math>a_n \geqslant 2</math> : <math><a_0, a_1, a_2,\cdots,a_n> = <a_0, a_1, a_2,\cdots,a_n-1,1></math>. Если <math>a_n = 1</math> : <math><a_0, a_1, a_2,\cdots,a_{n-1}, 1> = <a_0, a_1, a_2,\cdots,a_{n-1} + 1></math>. | ||
+ | }} | ||
+ | |||
===Лемма2=== | ===Лемма2=== | ||
Если <math>x = \frac{P\zeta+R}{Q\zeta+S}</math>, где <math>\zeta > 1, P, Q, R, S</math> удовлетворяют <math>Q>S>0</math> и <math>PS-QR= +- 1</math>, то <math>\frac{R}{S}, \frac{P}{Q} </math> - n-1-ая и n-ая подходящие дроби для <math>x</math>. | Если <math>x = \frac{P\zeta+R}{Q\zeta+S}</math>, где <math>\zeta > 1, P, Q, R, S</math> удовлетворяют <math>Q>S>0</math> и <math>PS-QR= +- 1</math>, то <math>\frac{R}{S}, \frac{P}{Q} </math> - n-1-ая и n-ая подходящие дроби для <math>x</math>. | ||
====Доказательство==== | ====Доказательство==== | ||
+ | ==Теорема 3== | ||
+ | Если некоторая дробь <math>\frac{P}{Q}</math> удовлетворяет условию <math>~|\alpha - \frac{P}{Q}|<\frac{1}{2Q^2}</math>, то она - подходящая дробь для <math> \alpha </math>. | ||
===Доказательство=== | ===Доказательство=== |
Версия 12:44, 21 июня 2010
Цепные дроби позволяют находить рациональные приближения вещественных чисел. Если действительное иррациональное число
разложить в цепную дробь, то точность n-ой подходящей дроби будет соответствовать следующему неравенству: .Содержание
Теорема 1
Теорема: |
Для любого иррационального числа существует бесконечное число дробей таких, что . |
Доказательство: |
Рассмотрим две последующие подходящие дроби к Но поскольку и . Пусть ни одна из них не удовлетворяет условию теоремы. Тогда имеем: . Отсюда . лежит между и , то , вследствие чего . Следовательно , что невозможно. Мы пришли к противоречию. Поэтому, по крайней мере для одной из двух подходящих дробей выполнено условие теоремы. Придавая различные значения , получим бесконечное множество дробей, удовлетворяющих условию теоремы. |
Теорема 2
Теорема: |
Для любого иррационального числа существует бесконечное число дробей таких, что |
Доказательство: |
Рассмотрим три последующие подходящие дроби к и . Пусть ни одна из них не удовлетворяет условию теоремы. Тогда имеем: .Так как и расположены по разные стороны от , то при нечётном имеем , а при чётном - .Из последних двух неравенств следует, что . Умножив обе части на и перенеся все члены в левую часть получим: . То есть , следовательно для целых и имеем .Так как Пользуясь рекуррентным соотношением получаем и расположены по разные стороны от , то аналогично получаем . . Пришли к противоречию. Значит для одной из трёх последовательных подходящих дробей будет выполняться условие теоремы. Тогда придавая различные значения получим бесконечно много дробей, для которых выполняется условие теоремы. q.e.d. |
Лемма1
Лемма: |
Любую конечную цепную дробь с чётным(нечётным) числом подходящих дробей можно представить в виде эквивалентной конечной цепной дроби с нечётным(чётным) числом подходящих дробей. |
Доказательство: |
Если | : . Если : .
Лемма2
Если
, где удовлетворяют и , то - n-1-ая и n-ая подходящие дроби для .Доказательство
Теорема 3
Если некоторая дробь
удовлетворяет условию , то она - подходящая дробь для .