Изменения
→Лемма2
}}
Если <math>x = \frac{P\zeta+R}{Q\zeta+S}</math>, где <math>\zeta > 1, P, Q, R, S</math> удовлетворяют <math>Q>S>0</math> и <math>PS-QR= +- 1</math>, то <math>\frac{R}{S}, \frac{P}{Q} </math> - n-1-ая и n-ая подходящие дроби для <math>x</math>.
|proof====Доказательство====}}
==Теорема 3==
Если некоторая дробь <math>\frac{P}{Q}</math> удовлетворяет условию <math>~|\alpha - \frac{P}{Q}|<\frac{1}{2Q^2}</math>, то она - подходящая дробь для <math> \alpha </math>.
===Доказательство===