Замкнутость регулярных языков относительно различных операций — различия между версиями
Kirelagin (обсуждение | вклад) (Произведение автоматов на радость Роме) |
Kirelagin (обсуждение | вклад) м |
||
Строка 14: | Строка 14: | ||
# | # | ||
#*<tex>L_1 \cup L_2</tex> является регулярным по определению [[Регулярные языки: два определения и их эквивалентность|регулярных языков]]. | #*<tex>L_1 \cup L_2</tex> является регулярным по определению [[Регулярные языки: два определения и их эквивалентность|регулярных языков]]. | ||
− | #*Рассмотрим автомат <tex>A_1' = \langle \Sigma , Q_1 , s_1 , Q_1 \setminus T_1 , \delta_1 \rangle </tex>, то есть автомат <tex>A</tex>, в котором терминальные и нетерминальные состояния инвертированы | + | #*Рассмотрим автомат <tex>A_1' = \langle \Sigma , Q_1 , s_1 , Q_1 \setminus T_1 , \delta_1 \rangle </tex>, то есть автомат <tex>A</tex>, в котором терминальные и нетерминальные состояния инвертированы (при таком построении следует помнить, что если в исходном автомате было опущено дьявольское состояние, его нужно явно добавить и сделать допускающим.) Очевидно, он допускает те и только те слова, которые не допускает автомат <tex>A_1</tex>, а значит, задаёт язык <tex>\overline{L_1}</tex>. Таким образом, <tex>\overline{L_1}</tex> {{---}} регулярный. |
#*<tex>L_1 \cap L_2 = \overline{\overline{L_1} \cup \overline{L_2}}</tex>. Тогда <tex>L_1 \cap L_2</tex> {{---}} регулярный. Также автомат для пересечения языков можно построить явно, используя конструкцию [[Прямое произведение ДКА|произведения автоматов]]. | #*<tex>L_1 \cap L_2 = \overline{\overline{L_1} \cup \overline{L_2}}</tex>. Тогда <tex>L_1 \cap L_2</tex> {{---}} регулярный. Также автомат для пересечения языков можно построить явно, используя конструкцию [[Прямое произведение ДКА|произведения автоматов]]. | ||
#*<tex>L_1 \setminus L_2 = L_1 \cap \overline{L_2}</tex>. Тогда <tex>L_1 \setminus L_2</tex> {{---}} регулярный. | #*<tex>L_1 \setminus L_2 = L_1 \cap \overline{L_2}</tex>. Тогда <tex>L_1 \setminus L_2</tex> {{---}} регулярный. |
Версия 10:12, 17 января 2012
Теорема: |
Пусть регулярные языки над одним алфавитом . Тогда следующие языки также являются регулярными:
—
|
Доказательство: |
Как известно, классы регулярных и автоматных языков совпадают. Пусть языки и распознаются автоматами и соответственно.
|
Прямой и обратный гомоморфизмы
Определение: |
Отображение | , сохраняющее операцию конкатенации , называется гомоморфизмом.
Гомоморфизм однозначно задается значениями на алфавите:
.
Определение: |
Образом языка | при гомоморфизме называется язык .
Определение: |
Прообразом языка | при гомоморфизме называется язык .
Утверждение: |
— регулярный , — гомоморфизм. Тогда — регулярный. |
Рассмотрим ДКА, распознающий . Заменим в нем все переходы по символам на переходы по их образам при гомоморфизме. Полученный автомат (с переходами по строкам) распознает в точности и имеет эквивалентный ДКА. |
Утверждение: |
— регулярный , — гомоморфизм. Тогда — регулярный. |
Рассмотрим ДКА, распознающий . Отследим для каждого состояния и символа строку : и положим в новом автомате (на том же множестве состояний). Автомат с построенной таким образом функцией переходов, очевидно, распознает слова языка и только их. |