Линейный клеточный автомат, эквивалентность МТ — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Определения)
Строка 2: Строка 2:
 
{{Определение|definition=
 
{{Определение|definition=
 
'''Клеточным автоматом''' <tex>A</tex> размерности <tex>d</tex> называется четверка <tex><{Z^d}, S, N, \delta></tex>, где
 
'''Клеточным автоматом''' <tex>A</tex> размерности <tex>d</tex> называется четверка <tex><{Z^d}, S, N, \delta></tex>, где
* <tex>S</tex> --- конечное мнжество, элементы которого являются состояниями <tex>A</tex>.
+
* <tex>S</tex> {{---}} конечное множество, элементы которого являются состояниями <tex>A</tex>.
* <tex>N</tex> --- конечное упорядоченное подмножество <tex>Z^d</tex>, <tex>N=\{{n_j}|{n_j}=(x_{1_j}, \dots, x_{d_j}), j \in \{1 \dots n\}\}</tex>, называемое '''окрестностью'''(''neighborhood'') <tex>A</tex>.
+
* <tex>N</tex> {{---}} конечное упорядоченное подмножество <tex>Z^d</tex>, <tex>N=\{{n_j}|{n_j}=(x_{1_j}, \dots, x_{d_j}), j \in \{1 \dots n\}\}</tex>, называемое '''окрестностью''' (''neighborhood'') <tex>A</tex>.
* <tex>\delta : S^{n+1} \rightarrow S</tex> --- функция перехода для <tex>A</tex>.
+
* <tex>\delta : S^{n+1} \rightarrow S</tex> {{---}} функция перехода для <tex>A</tex>.
 
}}
 
}}
  
 
{{Определение|definition=
 
{{Определение|definition=
'''Линейным клеточным автоматом'''(ЛКА) называется одномерный клеточный автомат, окрестность каждой клетки которого состоит из <tex>2 \cdot r + 1</tex> клеток,
+
'''Линейным клеточным автоматом''' (ЛКА) называется одномерный клеточный автомат, окрестность каждой клетки которого состоит из <tex>2 \cdot r + 1</tex> клеток,
 
находящихся на расстоянии не более <tex>r</tex> от данной.
 
находящихся на расстоянии не более <tex>r</tex> от данной.
 
}}
 
}}

Версия 06:09, 23 января 2012

Определения

Определение:
Клеточным автоматом [math]A[/math] размерности [math]d[/math] называется четверка [math]\lt {Z^d}, S, N, \delta\gt [/math], где
  • [math]S[/math] — конечное множество, элементы которого являются состояниями [math]A[/math].
  • [math]N[/math] — конечное упорядоченное подмножество [math]Z^d[/math], [math]N=\{{n_j}|{n_j}=(x_{1_j}, \dots, x_{d_j}), j \in \{1 \dots n\}\}[/math], называемое окрестностью (neighborhood) [math]A[/math].
  • [math]\delta : S^{n+1} \rightarrow S[/math] — функция перехода для [math]A[/math].


Определение:
Линейным клеточным автоматом (ЛКА) называется одномерный клеточный автомат, окрестность каждой клетки которого состоит из [math]2 \cdot r + 1[/math] клеток, находящихся на расстоянии не более [math]r[/math] от данной.


Другое определение линейного клеточного автомата

Определение:
Линейным клеточным автоматом [math]A[/math] назовем бесконечную ленту, в каждой клетке которой записан некоторый автомат. На вход автомату в клетке [math]i[/math] подается вектор из состояний автоматов в клетках с [math]i - r[/math] по [math]i + r[/math] включительно.
Утверждение:
Для любого ЛКА можно построить эквивалентный ему ЛКА, во всех клетках которого будет записан один и тот же автомат.
[math]\triangleright[/math]
Так как окрестность каждой клетки конечна и размер автомата в клетке конечен, то всего существует конечное число автоматов. Обозначим их множество как [math]D[/math]. Построим автомат [math]B[/math] следующим образом: множеством вершин [math]B[/math] будет объединение множеств вершин автоматов из [math]D[/math], переходы между вершинами [math]u[/math] и [math]v[/math] будет совпадать с переходами [math]D_i[/math], если [math]u[/math] и [math]v[/math] соответствуют вершинам из [math]D_i[/math], иначе переход отсутствует. Начальным состоянием автомата будет состояние,соответствующее начальному состоянию автомата [math]D_k[/math], который был записан в текущей клетке. Очевидно, что поведение такого автомата будет совпадать с поведением [math]D_k[/math].
[math]\triangleleft[/math]