Правоконтекстные грамматики, эквивалентность автоматам — различия между версиями
Строка 18: | Строка 18: | ||
Рассмотрим переход <tex>\langle S, \alpha \rangle \vdash^{k} \langle U, \varepsilon \rangle </tex>, а именно его последний шаг: <tex> \langle S, \alpha \rangle \vdash^{k-1} \langle Q, c \rangle \vdash \langle U, \varepsilon \rangle </tex>. | Рассмотрим переход <tex>\langle S, \alpha \rangle \vdash^{k} \langle U, \varepsilon \rangle </tex>, а именно его последний шаг: <tex> \langle S, \alpha \rangle \vdash^{k-1} \langle Q, c \rangle \vdash \langle U, \varepsilon \rangle </tex>. | ||
− | Так как для <tex>k-1</tex> | + | Так как для <tex>k-1</tex> шага верно, то <tex> S \Rightarrow^{k-1} \alpha c^{-1} Q </tex>, но по построению грамматики имеется правило <tex> Q \to c U</tex>, значит <tex> S \Rightarrow^{k-1} \alpha c^{-1} Q \Rightarrow \alpha c^{-1} c U = \alpha U</tex>. Таким образом, доказали для <tex>k</tex> шагов. |
Докажем в обратную сторону, а именно из <tex> S \Rightarrow^* \alpha U </tex> следует <tex> \langle S, \alpha \rangle \vdash^* \langle U, \varepsilon \rangle </tex>. Доказательство так же проведем по индукции. Индукция будет идти по количеству примененных подряд правил. | Докажем в обратную сторону, а именно из <tex> S \Rightarrow^* \alpha U </tex> следует <tex> \langle S, \alpha \rangle \vdash^* \langle U, \varepsilon \rangle </tex>. Доказательство так же проведем по индукции. Индукция будет идти по количеству примененных подряд правил. |
Версия 03:46, 24 января 2012
Определение: |
Праволинейной грамматикой | называется грамматика, в которой все правила имеют вид , .
Аналогично можно определить леволинейные грамматики.
Теорема: |
Множество языков, задаваемых праволинейными грамматиками, совпадает со множеством языков, задаваемых конечными автоматами. |
Доказательство: |
Пусть имеется конечный автомат. Построим для него праволинейную грамматику. Множеством нетерминалов нашей грамматики будет множество состояний автомата. Для каждой пары состояний и такой, что имеется переход из в по символу , добавим в грамматику правило . Затем для каждой пары состояний автомата и такой, что имеется переход из в по символу , и является допускающим состоянием в автомате, добавим в грамматику правило .Докажем, что если для автомата верно , то для построенной грамматики верно . Будем доказывать индукцией по переходам в автомате.Базой индукции будут переходы за 0 шагов. Индукционный переход: пусть данное свойство выполняется для переходов длины . Докажем, что верно и для переходов за шагов.Рассмотрим переход , а именно его последний шаг: . Так как для шага верно, то , но по построению грамматики имеется правило , значит . Таким образом, доказали для шагов.Докажем в обратную сторону, а именно из следует . Доказательство так же проведем по индукции. Индукция будет идти по количеству примененных подряд правил.Базой индукции будут строки, выводимые в грамматике из начального нетерминала за 0 применений правил.Индукционный переход: пусть верно для применения правил. Рассмотрим произвольную строку, полученную за применений правил. Рассмотрим последнее применение правила. Если оно имело вид , значит в автомате возможен переход , а если , то является допускающим в автомате. Таким образом, свойство выполняется для последовательно примененных правил. Эквивалентность языков автомата и грамматики доказана.
Докажем, что если слово выводится в грамматике, то оно допускается автоматом. Рассмотрим последовательность применений правил, дающую слово длины . Для каждого правила вида в автомате существует переход из состояния в состояние по символу . Таким образом, если после применения правил мы можем получить строку вида , то в автомате имеется соответствующая последовательность переходов , а поскольку можно вывести , то хотя бы для одной строки такого вида существует правило , а значит в автомате есть переход . Таким образом автомат допускает слово .Докажем, что если слово допускается автоматом, то его можно вывести в грамматике. Рассмотрим слово Теорема доказана. длины . Рассмотрим какую-либо последовательность переходов автомата, допускающую данное слово . Для каждого одношагового перехода в автомате существует соответствующее правило в грамматике. Значит для подпоследовательности переходов из шага существует соответствующая последовательность применений правил . Для последнего перехода в автомате существует правило . Таким образом, существует последовательность применений правил грамматики, выводящая слово . |
Литература
- Джон Хопкрофт, Раджив Мотвани, Джеффри Ульман. Введение в теорию автоматов, языков и вычислений.