Эргодическая марковская цепь — различия между версиями
Whiplash (обсуждение | вклад) м (→Для циклических цепей)  | 
				Whiplash (обсуждение | вклад)   (→Для циклических цепей)  | 
				||
| Строка 33: | Строка 33: | ||
|about=Эргодическая теорема  | |about=Эргодическая теорема  | ||
|statement=  | |statement=  | ||
| − | Для любой эргодической цепи последовательность степеней <tex>P^{n}</tex> суммируется по Эйлеру к предельной матрице <tex>A</tex>, и эта предельная матрица имеет вид <tex>A = \xi\alpha</tex>, где <tex>\alpha</tex> - положительный вероятностный вектор.  | + | Для любой эргодической цепи последовательность степеней <tex>P^{n}</tex> суммируется по Эйлеру к предельной матрице <tex>A</tex>, и эта предельная матрица имеет вид <tex>A = \xi\alpha</tex>, где <tex>\alpha</tex> - положительный вероятностный вектор, <tex>\xi</tex> - вектор-столбец из единиц.  | 
|proof=  | |proof=  | ||
Версия 01:39, 8 февраля 2012
| Определение: | 
| Эргодическая марковская цепь — марковская цепь, целиком состоящая из одного эргодического класса. | 
Содержание
Стационарный режим
Эргодические марковские цепи описываются сильно связным графом. Это означает, что в такой системе возможен переход из любого состояния в любое состояние за конечное число шагов.
Для эргодических цепей при достаточно большом времени функционирования () наступает стационарный режим, при котором вероятности состояний системы не зависят от времени и не зависят от распределения вероятностей в начальный момент времени, т.е. .
Классификация эргодических цепей
| Определение: | 
| В эргодической цепи можно выделить циклические классы. Количество циклических классов называют периодом цепи, если цепь состоит целиком из одного циклического класса, её называют регулярной. С течением времени текущее состояние движется по циклическим классам в определенном порядке, причем каждые d шагов она оказывается в одном и том же циклическом классе. | 
Таким образом, эргодические цепи делятся на регулярные и циклические.
Эргодическая теорема
| Определение: | 
| Эргодическое (стационарное) распределение - распределение , такое что и (где - вероятность оказаться в -ом состоянии, выйдя из -ого, через переходов). | 
Для регулярных цепей
Доказательство теоремы для случая регулярных цепей приведено в конспекте про регулярные цепи.
Для циклических цепей
| Теорема (Эргодическая теорема): | 
Для любой эргодической цепи последовательность степеней  суммируется по Эйлеру к предельной матрице , и эта предельная матрица имеет вид , где  - положительный вероятностный вектор,  - вектор-столбец из единиц.  | 
| Доказательство: | 
| 
 В случае циклической цепи переходы из одного циклического класса в другой возможны только при определенных значениях , которые периодически повторяются. Таким образом, никакая степень матрицы переходов не является положительной матрицей, и различные степени содержат нули на различных местах. С увеличением степени расположение этих нулей периодически повторяется. Следовательно, последовательность не может сходиться в обычном смысле, для нее требуется так называемая суммируемость по Эйлеру. Рассмотрим матрицу при некотором . Эта матрица является переходной матрицей. Она имеет положительные элементы на всех тех же местах, что и , следовательно, она также задает эргодическую цепь. Также диагональные элементы этой матрицы положительны. Значит, в каждое состояние можно возвратиться за один шаг, а это значит, что . Таким образом, новая цепь является регулярной. Из эргодической теоремы для регулярных цепей следует, что стремится к матрице , где - положительный вероятностный вектор. Таким образом:  | 
Следствия
| Теорема: | 
Если  - объекты из предыдущей теоремы. Тогда справедливы факты:
 
  | 
| Доказательство: | 
| 
 Домножим на . Таким образом, мы получим, что предел последовательности в смысле Эйлера равен . Значит, первый факт доказан. 
 
 следует, что и поскольку , то . Получается, что второй факт доказан. 
  | 
Пример
Рассмотрим марковскую цепь из двух состояний. Будем бросать честную монету и с вероятностью 0.5 менять состояние на противороложное. Такую цепь определяет стохастическая матрица вида . Предельным распределением для этой цепи будет , где .
Ссылки
Литература
Дж. Кемени, Дж. Снелл "Конечные цепи Маркова" - Издательство "Наука", 1970 г - 129 c.