Алгоритм Хаффмана — различия между версиями
Rybak (обсуждение | вклад) м (номер страницы) |
(Переделано доказательство первой леммы) |
||
Строка 77: | Строка 77: | ||
Тогда для алфавита <tex>C</tex> существует оптимальный префиксный код, кодовые слова символов <tex>x</tex> и <tex>y</tex> в котором имеют одинаковую максимальную длину и отличаются лишь последним битом. | Тогда для алфавита <tex>C</tex> существует оптимальный префиксный код, кодовые слова символов <tex>x</tex> и <tex>y</tex> в котором имеют одинаковую максимальную длину и отличаются лишь последним битом. | ||
|proof= | |proof= | ||
− | Возьмем дерево <tex>T</tex>, представляющее произвольный оптимальный префиксный код | + | Возьмем дерево <tex>T</tex>, представляющее произвольный оптимальный префиксный код для алфавита <tex>C</tex>. Преобразуем его в дерево, представляющее другой оптимальный префиксный код, в котором символы <tex>x</tex> и <tex>y</tex> - листья с общим родительским узлом, находящиеся на максимальной глубине. |
− | Пусть <tex>a</tex> и <tex>b</tex> | + | Пусть символы <tex>a</tex> и <tex>b</tex> имеют общий родительский узел и находятся на максимальной глубине дерева <tex>T</tex>. Предположим, что <tex>f[a] \le f[b]</tex> и <tex>f[x] \le f[y]</tex>. Так как <tex>f[x]</tex> и <tex>f[y]</tex> - две наименьшие частоты, а <tex>f[a]</tex> и <tex>f[b]</tex> - две произвольные частоты, то выполняются отношения <tex>f[x] \le f[a]</tex> и <tex>f[y] \le f[b]</tex>. Пусть дерево <tex>T'</tex> - дерево, полученное из <tex>T</tex> путем перестановки листьев <tex>a</tex> и <tex>x</tex>, а дерево <tex>T''</tex> - дерево полученное из <tex>T'</tex> перестановкой листьев <tex>b</tex> и <tex>y</tex>. Разность стоимостей деревьев <tex>T</tex> и <tex>T'</tex> равна: |
− | + | <tex>B(T) - B(T') = \sum\limits_{c \in C} f(c)d_T(c) - \sum\limits_{c \in C} f(c)d_{T'}(c) = (f[a] - f[x])(d_T(a) - d_T(x)),</tex> | |
− | + | что больше либо равно <tex>0</tex>, так как величины <tex>f[a] - f[x]</tex> и <tex>d_T(a) - d_T(x)</tex> неотрицательны. Величина <tex>f[a] - f[x]</tex> неотрицательна, потому что <tex>x</tex> - лист с минимальной частотой, а величина <tex>d_T(a) - d_T(x)</tex> является неотрицательной, так как лист <tex>a</tex> находится на максимальной глубине в дереве <tex>T</tex>. Точно так же перестановка листьев <tex>y</tex> и <tex>b</tex> не будет приводить к увеличению стоимости. Таким образом, разность <tex>B(T') - B(T'')</tex> тоже будет неотрицательной. | |
− | + | Таким образом, выполняется неравенство <tex>B(T'') \le B(T)</tex>. С другой стороны, <tex>T</tex> - оптимальное дерево, поэтому должно выполняться неравенство <tex>B(T) \le B(T'')</tex>. Отсюда следует, что <tex>B(T) = B(T'')</tex>. Значит, <tex>T''</tex> - дерево, представляющее оптимальный префиксный код, в котором символы <tex>x</tex> и <tex>y</tex> имеют одинаковую максимальную длину, что и доказывает лемму. | |
− | |||
− | |||
− | |||
− | |||
− | Таким образом, выполняется неравенство <tex>B(T') \le B(T | ||
}} | }} | ||
Версия 16:23, 27 февраля 2012
Алгоритм Хаффмана — алгоритм оптимального префиксного кодирования алфавита. Это один из классических алгоритмов, известных с 60-х годов. Использует только частоту появления одинаковых байт в изображении. Сопоставляет символам входного потока, которые встречаются большее число раз, цепочку бит меньшей длины. И, напротив, встречающимся редко — цепочку большей длины.
Определение
Определение: |
Пусть 1. не является префиксом для , при2. Сумма называется кодом Хаффмана. минимальна. ( — длина кода ) | — алфавит из n различных символов, — соответствующий ему набор положительных целых весов. Тогда набор бинарных кодов , такой, что:
Алгоритм
Построение кода Хаффмана сводится к построению соответствующего бинарного дерева по следующему алгоритму:
1. Составим список кодируемых символов, при этом будем рассматривать один символ как дерево, состоящее из одного элемента, весом, равным частоте появления символа в тексте.
2. Из списка выберем два узла с наименьшим весом.
3. Сформируем новый узел с весом, равным сумме весов выбранных узлов, и присоединим к нему два выбранных узла в качестве дочерних.
4. Добавим к списку только что сформированный узел.
5. Если в списке больше одного узла, то повторить пункты со второго по пятый.
Пример
Для примера возьмём слово "Миссисипи". Тогда алфавит будет
и, м, п, с , а набор весов :Узел | и | м | п | с |
---|---|---|---|---|
Вес | 4 | 1 | 1 | 3 |
По алгоритму возьмем два символа с наименьшей частотой - это м и п. Сформируем из них новый узел мп весом 2 и добавим его к списку узлов:
Узел | и | мп | с |
---|---|---|---|
Вес | 4 | 2 | 3 |
Затем объединим в один узел узлы мп и c:
Узел | и | мпс |
---|---|---|
Вес | 4 | 5 |
И, наконец, объединяем два узла и и мпс. Итак, мы получили дерево Хаффмана и соответствующую ему таблицу кодов:
Символ | и | м | п | с |
---|---|---|---|---|
Код | 0 | 100 | 101 | 11 |
Таким образом, закодированное слово "миссисипи" будет выглядеть как "1000111101101010". Длина закодированного слова - 16 бит. Стоит заметить, что если бы мы использовали для кодирования каждого символа из четырёх по 2 бита, длина закодированного слова составила бы 18 бит.
Корректность алгоритма Хаффмана
Чтобы доказать корректность алгоритма Хаффмана, покажем, что в задаче о построении оптимального префиксного кода проявляются свойства жадного выбора и оптимальной подструктуры. В сформулированной ниже лемме показано соблюдение свойства жадного выбора.
Лемма (1): |
Пусть — алфавит, каждый символ которого встречается с частотой . Пусть и — два символа алфавита с самыми низкими частотами.
Тогда для алфавита существует оптимальный префиксный код, кодовые слова символов и в котором имеют одинаковую максимальную длину и отличаются лишь последним битом. |
Доказательство: |
Возьмем дерево , представляющее произвольный оптимальный префиксный код для алфавита . Преобразуем его в дерево, представляющее другой оптимальный префиксный код, в котором символы и - листья с общим родительским узлом, находящиеся на максимальной глубине.Пусть символы и имеют общий родительский узел и находятся на максимальной глубине дерева . Предположим, что и . Так как и - две наименьшие частоты, а и - две произвольные частоты, то выполняются отношения и . Пусть дерево - дерево, полученное из путем перестановки листьев и , а дерево - дерево полученное из перестановкой листьев и . Разность стоимостей деревьев и равна:
что больше либо равно Таким образом, выполняется неравенство , так как величины и неотрицательны. Величина неотрицательна, потому что - лист с минимальной частотой, а величина является неотрицательной, так как лист находится на максимальной глубине в дереве . Точно так же перестановка листьев и не будет приводить к увеличению стоимости. Таким образом, разность тоже будет неотрицательной. . С другой стороны, - оптимальное дерево, поэтому должно выполняться неравенство . Отсюда следует, что . Значит, - дерево, представляющее оптимальный префиксный код, в котором символы и имеют одинаковую максимальную длину, что и доказывает лемму. |
Лемма (2): |
Пусть дан алфавит , в котором для каждого символа определены частоты . Пусть и — два символа из алфавита с минимальными частотами. Пусть — алфавит, полученный из алфавита путем удаления символов и и добавления нового символа , так что . По определению частоты в алфавите совпадают с частотами в алфавите , за исключением частоты . Пусть — произвольное дерево, представляющее оптимальный префиксный код для алфавита Тогда дерево , полученное из дерева путем замены листа внутренним узлом с дочерними элементами и , представляет оптимальный префиксный код для алфавита . |
Доказательство: |
Сначала покажем, что стоимость или . Докажем лемму методом от противного. Предположим, дерево |
Теорема: |
Алгоритм Хаффмана дает оптимальный префиксный код. |
Доказательство: |
Справедливость теоремы непосредственно следует из лемм (1) и (2) |
Литература
- Томас Х. Кормен, Чарльз И. Лейзерсон, Рональд Л. Ривест, Клиффорд Штайн Алгоритмы: построение и анализ — 2-е изд. — М.: «Вильямс», 2007. — с. 459. — ISBN 5-8489-0857-4