Алгоритм масштабирования потока — различия между версиями
(→Оценка времени работы) |
(→Алгоритм) |
||
Строка 1: | Строка 1: | ||
== Алгоритм == | == Алгоритм == | ||
− | Пусть дана [[Определение_сети,_потока#.D0.9E.D0.BF.D1.80.D0.B5.D0.B4.D0.B5.D0.BB.D0.B5.D0.BD.D0.B8.D0.B5_.D1.81.D0.B5.D1.82.D0.B8|сеть]] <tex> G </tex>, все ребра которой имеют целочисленную пропускную способность. Обозначим за <tex> U </tex> максимальную пропускную способность: <tex> U = \max\limits_{(u, v) \in E} c(u, v) </tex>. | + | Пусть дана [[Определение_сети,_потока#.D0.9E.D0.BF.D1.80.D0.B5.D0.B4.D0.B5.D0.BB.D0.B5.D0.BD.D0.B8.D0.B5_.D1.81.D0.B5.D1.82.D0.B8|сеть]] <tex> G </tex>, все ребра которой имеют целочисленную [[Определение_сети,_потока#.D0.9E.D0.BF.D1.80.D0.B5.D0.B4.D0.B5.D0.BB.D0.B5.D0.BD.D0.B8.D0.B5_.D1.81.D0.B5.D1.82.D0.B8|пропускную способность]]. Обозначим за <tex> U </tex> максимальную пропускную способность: <tex> U = \max\limits_{(u, v) \in E} c(u, v) </tex>. |
Идея алгоритма заключается в нахождении путей с высокой пропускной способностью в первую очередь, чтобы сразу сильно увеличивать [[Определение_сети,_потока#.D0.9E.D0.BF.D1.80.D0.B5.D0.B4.D0.B5.D0.BB.D0.B5.D0.BD.D0.B8.D0.B5_.D0.BF.D0.BE.D1.82.D0.BE.D0.BA.D0.B0|поток]] по ним, а затем по всем остальным. Для этого воспользуемся масштабом <tex> \Delta </tex>. Изначально положим <tex> \Delta = 2^{\lfloor \log_2 U \rfloor} </tex>. | Идея алгоритма заключается в нахождении путей с высокой пропускной способностью в первую очередь, чтобы сразу сильно увеличивать [[Определение_сети,_потока#.D0.9E.D0.BF.D1.80.D0.B5.D0.B4.D0.B5.D0.BB.D0.B5.D0.BD.D0.B8.D0.B5_.D0.BF.D0.BE.D1.82.D0.BE.D0.BA.D0.B0|поток]] по ним, а затем по всем остальным. Для этого воспользуемся масштабом <tex> \Delta </tex>. Изначально положим <tex> \Delta = 2^{\lfloor \log_2 U \rfloor} </tex>. |
Версия 18:38, 2 марта 2012
Содержание
Алгоритм
Пусть дана сеть , все ребра которой имеют целочисленную пропускную способность. Обозначим за максимальную пропускную способность: .
Идея алгоритма заключается в нахождении путей с высокой пропускной способностью в первую очередь, чтобы сразу сильно увеличивать поток по ним, а затем по всем остальным. Для этого воспользуемся масштабом . Изначально положим .
На каждой итерации в дополняющей сети находим дополняющие пути с пропускной способностью не меньшей , увеличиваем поток вдоль них. Уменьшив масштаб в раза, переходим к следующей итерации.
Заметим, что при Эдмондса-Карпа, вследствие чего является корректным.
алгоритм вырождается в алгоритмКоличество необходимых дополнений путей, основанных на кратчайших путях, может быть много больше количества дополнений, основанных на путях с высокой пропускной способностью.
Оценка времени работы
Утверждение: | ||||||||||||||||||
Время работы алгоритма — . | ||||||||||||||||||
В ходе выполнения алгоритма масштаб принимает следующие значения: . Тогда — количество итераций алгоритма.
| ||||||||||||||||||
Псевдокод
Max_Flow_By_Scaling(G,s,t)while do while в существует увеличивающий путь с пропускной способностью не меньшей do увеличить поток по рёбрам на обновить return