Алгоритм масштабирования потока — различия между версиями
(→Алгоритм) |
(→Алгоритм) |
||
Строка 6: | Строка 6: | ||
Идея алгоритма заключается в нахождении путей с высокой пропускной способностью в первую очередь, чтобы сразу сильно увеличивать поток по ним, а затем по всем остальным. Для этого воспользуемся масштабом <tex> \Delta </tex>. Изначально положим <tex> \Delta = 2^{\lfloor \log_2 U \rfloor} </tex>. | Идея алгоритма заключается в нахождении путей с высокой пропускной способностью в первую очередь, чтобы сразу сильно увеличивать поток по ним, а затем по всем остальным. Для этого воспользуемся масштабом <tex> \Delta </tex>. Изначально положим <tex> \Delta = 2^{\lfloor \log_2 U \rfloor} </tex>. | ||
− | На каждой итерации в [[Дополняющая_сеть,_дополняющий_путь|дополняющей сети]] | + | На каждой итерации в [[Дополняющая_сеть,_дополняющий_путь|дополняющей сети]] алгоритм находит [[Дополняющая_сеть,_дополняющий_путь|дополняющие пути]] с пропускной способностью не меньшей <tex> \Delta </tex> и увеличивает поток вдоль них. |
− | Уменьшив масштаб <tex> \Delta </tex> в <tex> 2 </tex> раза, | + | Уменьшив масштаб <tex> \Delta </tex> в <tex> 2 </tex> раза, переходит к следующей итерации. |
− | + | Очевидно, что при <tex> \Delta = 1 </tex> алгоритм вырождается в алгоритм [[Алоритм_Эдмондса-Карпа|Эдмондса-Карпа]], вследствие чего является корректным. | |
Количество необходимых увеличений путей, основанных на кратчайших путях, может быть много больше количества увеличений, основанных на путях с высокой пропускной способностью. | Количество необходимых увеличений путей, основанных на кратчайших путях, может быть много больше количества увеличений, основанных на путях с высокой пропускной способностью. |
Версия 10:30, 6 марта 2012
Содержание
Алгоритм
Алгоритм масштабирования потока — алгоритм поиска максимального потока, основывающийся на предположении, что пропускные способности всех ребер выражаются целыми числами.
Пусть дана сеть , все ребра которой имеют целочисленную пропускную способность. Обозначим за максимальную пропускную способность: .
Идея алгоритма заключается в нахождении путей с высокой пропускной способностью в первую очередь, чтобы сразу сильно увеличивать поток по ним, а затем по всем остальным. Для этого воспользуемся масштабом
. Изначально положим .На каждой итерации в дополняющей сети алгоритм находит дополняющие пути с пропускной способностью не меньшей и увеличивает поток вдоль них. Уменьшив масштаб в раза, переходит к следующей итерации.
Очевидно, что при Эдмондса-Карпа, вследствие чего является корректным.
алгоритм вырождается в алгоритмКоличество необходимых увеличений путей, основанных на кратчайших путях, может быть много больше количества увеличений, основанных на путях с высокой пропускной способностью.
Оценка времени работы
Утверждение: | ||||||||||||||||||
Время работы алгоритма — . | ||||||||||||||||||
В ходе выполнения алгоритма масштаб принимает следующие значения: . Тогда — количество итераций алгоритма.
| ||||||||||||||||||
Псевдокод
Max_Flow_By_Scaling(G,s,t)while do while в существует увеличивающий путь с пропускной способностью не меньшей do увеличить поток по рёбрам на обновить return