Биномиальная куча — различия между версиями
Rybak (обсуждение | вклад) (→delete) |
Gr1n (обсуждение | вклад) (→Биномиальное дерево) |
||
| Строка 1: | Строка 1: | ||
= Биномиальное дерево = | = Биномиальное дерево = | ||
| − | |||
{{Определение | {{Определение | ||
| Строка 12: | Строка 11: | ||
== Свойства биномиальных деревьев == | == Свойства биномиальных деревьев == | ||
| + | {{Утверждение | ||
| + | |statement=Биномиальное дерево <tex>B_k</tex> с <tex>n</tex> вершинами имеет <tex>2^k</tex> узлов | ||
| + | |proof=Так как в дереве порядка <tex>k+1</tex> вдвое больше узлов, чем в дереве порядка <tex>k</tex>, а в дереве нулевого порядка <tex>1 = 2^0</tex> узел, то дерево порядка <tex>k</tex> имеет <tex>2^k</tex> узлов. | ||
| + | }} | ||
| − | + | {{Утверждение | |
| − | + | |statement=Биномиальное дерево <tex>B_k</tex> с <tex>n</tex> вершинами имеет высоту <tex>k</tex>; | |
| − | + | |proof=Так как в дереве порядка <tex>k+1</tex> высота больше на <tex>1</tex> (так как мы подвешиваем к текущему дереву дерево того же порядка), чем в дереве порядка <tex>k</tex>, а в дереве нулевого порядка высота <tex>0</tex> , то дерево порядка <tex>k</tex> имеет высоту <tex>k</tex>. | |
| − | + | }} | |
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | Биномиальное дерево <tex>B_k</tex> с <tex>n</tex> вершинами имеет высоту <tex>k</tex>; | ||
| − | |||
| − | |||
| − | |||
| − | Так как в дереве порядка <tex>k+1</tex> высота больше на <tex>1</tex> (так как мы подвешиваем к текущему дереву дерево того же порядка), чем в дереве порядка <tex>k</tex>, а в дереве нулевого порядка высота <tex>0</tex> , то дерево порядка <tex>k</tex> имеет высоту <tex>k</tex>. | ||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| + | {{Утверждение | ||
| + | |statement=Биномиальное дерево <tex>B_k</tex> с <tex>n</tex> вершинами имеет ровно <tex>{k\choose i}</tex> узлов на высоте <tex>i = 0, 1, 2, \dots</tex>; | ||
| + | |proof= | ||
Докажем по индукции: | Докажем по индукции: | ||
| Строка 40: | Строка 29: | ||
Рассмотрим <tex>i</tex> уровень дерева <tex>B_{k+1}</tex>. Дерево <tex>B_{k+1}</tex> было получено подвешиванием одного дерева порядка <tex>k</tex> к другому. Тогда на <tex>i</tex> уровне дерева <tex>B_{k+1}</tex> всего узлов <tex>{k\choose i} + {k\choose {i - 1}}</tex>, так как от подвешенного дерева в дерево порядка <tex>k+1</tex> нам пришли узлы глубины <tex>i-1</tex>. То для <tex>i</tex> уровня дерева <tex>B_{k+1}</tex> количество узлов <tex>{k\choose i} + {k\choose {i - 1}} ={{k + 1}\choose i} </tex>. То свойство доказано. | Рассмотрим <tex>i</tex> уровень дерева <tex>B_{k+1}</tex>. Дерево <tex>B_{k+1}</tex> было получено подвешиванием одного дерева порядка <tex>k</tex> к другому. Тогда на <tex>i</tex> уровне дерева <tex>B_{k+1}</tex> всего узлов <tex>{k\choose i} + {k\choose {i - 1}}</tex>, так как от подвешенного дерева в дерево порядка <tex>k+1</tex> нам пришли узлы глубины <tex>i-1</tex>. То для <tex>i</tex> уровня дерева <tex>B_{k+1}</tex> количество узлов <tex>{k\choose i} + {k\choose {i - 1}} ={{k + 1}\choose i} </tex>. То свойство доказано. | ||
| + | }} | ||
| − | + | {{Утверждение | |
| + | |statement=Биномиальное дерево <tex>B_k</tex> с <tex>n</tex> вершинами имеет корень степени <tex>k</tex>; степень всех остальных вершин меньше степени корня биномиального дерева; | ||
| + | |proof=Так как в дереве порядка <tex>k+1</tex> степень корня больше на <tex>1</tex>, чем в дереве порядка <tex>k</tex>, а в дереве нулевого порядка степень корня <tex>0</tex>, то дерево порядка <tex>k</tex> имеет корень степени <tex>k</tex>. И так как при таком увеличении порядка(при переходе от дерева порядка <tex>k</tex> к <tex>k+1</tex>) в полученном дереве лишь степень корня возрастает, то доказываемый инвариант, то есть степень корня больше степени остальных вершин, не будет нарушаться. | ||
| − | + | }} | |
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| + | {{Утверждение | ||
| + | |statement=Биномиальное дерево <tex>B_k</tex> с <tex>n</tex> вершинами максимальная степень произвольного узла в биномиальном дереве с <tex>n</tex> узлами равна <tex>\log(n)</tex>. | ||
| + | |proof= | ||
Докажем это утверждение для корня. Степень остальных вершин меньше по предыдущему свойству. Так как степень корня дерева порядка <tex>k</tex> равна <tex>k</tex>, а узлов в этом дереве <tex>n = 2^k</tex>, то прологарифмировав обе части получаем, что <tex>k=O(\log(n))</tex>, то степень произвольного узла не более <tex>\log(n)</tex>. | Докажем это утверждение для корня. Степень остальных вершин меньше по предыдущему свойству. Так как степень корня дерева порядка <tex>k</tex> равна <tex>k</tex>, а узлов в этом дереве <tex>n = 2^k</tex>, то прологарифмировав обе части получаем, что <tex>k=O(\log(n))</tex>, то степень произвольного узла не более <tex>\log(n)</tex>. | ||
| + | }} | ||
= Биномиальная куча= | = Биномиальная куча= | ||
Версия 22:26, 9 марта 2012
Содержание
Биномиальное дерево
| Определение: |
| Биномиальное дерево — дерево, определяемое для каждого следующим образом: — дерево, состоящее из одного узла высоты , то есть состоит из одного узла; состоит из двух биномиальных деревьев , связанны вместе таким образом, что корень одного из них является крайним левым дочерним узлом корня второго дерева. |
Свойства биномиальных деревьев
| Утверждение: |
Биномиальное дерево с вершинами имеет узлов |
| Так как в дереве порядка вдвое больше узлов, чем в дереве порядка , а в дереве нулевого порядка узел, то дерево порядка имеет узлов. |
| Утверждение: |
Биномиальное дерево с вершинами имеет высоту ; |
| Так как в дереве порядка высота больше на (так как мы подвешиваем к текущему дереву дерево того же порядка), чем в дереве порядка , а в дереве нулевого порядка высота , то дерево порядка имеет высоту . |
| Утверждение: |
Биномиальное дерево с вершинами имеет ровно узлов на высоте ; |
|
Докажем по индукции: База — верно. Пусть для некоторого условие верно, то докажем, что для это также верно: Рассмотрим уровень дерева . Дерево было получено подвешиванием одного дерева порядка к другому. Тогда на уровне дерева всего узлов , так как от подвешенного дерева в дерево порядка нам пришли узлы глубины . То для уровня дерева количество узлов . То свойство доказано. |
| Утверждение: |
Биномиальное дерево с вершинами имеет корень степени ; степень всех остальных вершин меньше степени корня биномиального дерева; |
| Так как в дереве порядка степень корня больше на , чем в дереве порядка , а в дереве нулевого порядка степень корня , то дерево порядка имеет корень степени . И так как при таком увеличении порядка(при переходе от дерева порядка к ) в полученном дереве лишь степень корня возрастает, то доказываемый инвариант, то есть степень корня больше степени остальных вершин, не будет нарушаться. |
| Утверждение: |
Биномиальное дерево с вершинами максимальная степень произвольного узла в биномиальном дереве с узлами равна . |
| Докажем это утверждение для корня. Степень остальных вершин меньше по предыдущему свойству. Так как степень корня дерева порядка равна , а узлов в этом дереве , то прологарифмировав обе части получаем, что , то степень произвольного узла не более . |
Биномиальная куча
| Определение: |
Биномиальная пирамида — представляет собой множество биномиальных деревьев, которые удовлетворяют следующим свойствам:
|
Представление биномиальных куч
Поскольку количество детей у узлов варьируется в широких пределах, ссылка на детей осуществляется через левого ребенка, а остальные дети образуют односвязный список. Каждый узел в биномиальной пирамиде (куче) представляется набором полей:
- — ключ (вес) элемента;
- — указатель на родителя узла;
- — указатель на левого ребенка узла;
- — указатель на правого брата узла;
- — степень узла (количество дочерних узлов данного узла).
Корни деревьев, их которых состоит пирамида, содержатся в так называемом списке корней, при проходе по которому степени соответствующих корней находятся в неубывающем порядке. Доступ к куче осуществляется ссылкой на первый корень в списке корней.
Операции над биномиальными кучами
Рассмотрим операции, которые можно производить с биномиальной пирамидой. Их асимптотики показаны в таблице.
| insert | |
| getMinimum | |
| extractMin | |
| merge | |
| decreaseKey | |
| delete |
Обозначим нашу кучу за . То пусть — указатель на корень биномиального дерева минимального порядка этой кучи. Изначально , то есть пирамида не содержит элементов.
getMinimum
Для нахождения минимального элемента надо найти элемент в списке корней с минимальным значением (предполагается, что ключей, равных , нет).
Так как корней в этом списке не более , то операция выполняется за .
При вызове этой процедуры для кучи, изображенной на картинке ниже, будет возвращен указатель на вершину с ключем .
merge
insert
Необходимо просто создать биномиальную пирамиду с одним узлом за время и объединяет ее с биномиальной пирамидой , содержащей узлов, за время .
extractMin
Приведенная ниже процедура извлекает узел с минимальным ключом из биномиальной кучи и возвращает указатель на извлеченный узел. Процедура выполняется за время , поскольку всего в списке корней биномиальных деревьев. И всего у найденного дерева порядка(с минимальным значением ключа) ровно детей, то сложность перебора этих детей будет тоже . То имеем асимптотику .
Node extractMin(H) {
//поиск корня х с минимальным значением ключа в списке корней Н:
min = ;
x = null;
curx = H.head;
while curx null {
// в случае минимальности текущего ключа переприсваиваем значение текущего минимума
if curx.key < min {
min = curx.key;
x = curx;
}
curx = curx.next;
}
//удаление найденного корня x из списка корней деревьев кучи
x.prev.next = x.next;
x.next.prev = x.prev;
//добавление детей элемента x в кучу:
H' = null;
curx = x.child;
while curx null {
// удаление элемента x из предков curx
p[curx] = null;
// присвоение указателю вспомогательного дерева H' адреса текущего корня текущего ребенка
H'.head = curx;
// слияние нашего дерева с текущим деревом H'
H = merge(H, H');
// переход к следующему ребенку
curx = curx.sibling;
}
return x;
}
Поскольку минимальный элемент находится в корневом списке, найти его легко; после его удаления соответствующее дерево рассыпается в набор биномиальных деревьев меньшего размера, который надо объединить с оставшейся частью кучи. Все действия выполняются за время , так что общее время работы процедуры есть .
decreaseKey
Следующая процедура уменьшает ключ элемента биномиальной кучи, присваивая ему новое значение. Вершина, ключ которой был уменьшен, «всплывает» наверх. Процедура выполняется за время , поскольку глубина вершины есть (свойства биномиального дерева), а при выполнении каждого шага алгоритма мы поднимаемся вверх.
void decreaseKey(H, x, k) {
// проверка на то, что текущий ключ не меньше передаваемого ключа k
if k > key[x] then
return;
key[x] = k;
y = x;
z = p[y];
//поднимаем текущий элемент x с новым ключом k, пока
//это значение меньше значения в родительской вершине
while z null and key[y] < key[z] do {
swap(key[y], key[z]);
y = z;
z = p[y];
}
}
Пример работы процедуры проиллюстрирован на рисунке ( — уменьшаемый элемент, — его предок).
delete
Удаление ключа сводится к двум предыдущим операциям: сначала нужно уменьшить ключ до минимально возможного значения, а затем извлечь вершину с минимальным ключом. В процессе выполнения процедуры этот узел всплывает вверх, откуда и удаляется. Процедура выполняется за время .
void delete(H, x) {
//уменшение ключа до минимально вохможного значения
decreaseKey(H, x, );
//удаление "всплывшего" элемента
extractMin(H);
}
Источники
- Биномиальные кучи — INTUIT.ru
- Binomial heap — Wikipedia
- Томас Х. Кормен, Чарльз И. Лейзерсон, Рональд Л. Ривест, Клиффорд Штайн Алгоритмы: построение и анализ — 2-е изд. — М.: «Вильямс», 2007. — с. 538—558. — ISBN 5-8489-0857-4