Укладка графа с планарными компонентами рёберной двусвязности — различия между версиями
Строка 14: | Строка 14: | ||
Рассмотрим укладку графа <tex>G</tex> на сфере. Возьмем на сфере точку <tex>N</tex>, не лежащую на ребре, и не вершину. Выберем на сфере точку <tex>S</tex> противолежащую <tex>N</tex> (<tex>N</tex> и <tex>S</tex> лежат на одном диаметре и при этом не совпадают). Проведем через точку <tex>S</tex> касательную к сфере плоскость. Спроектируем на плоскость все точки сферы, проведя все возможные лучи из точки <tex>N</tex> через точки сферы до пересечения с плоскостью (рис. 1) . Ясно, что эта проекция дает укладку графа <tex>G</tex> на плоскости. | Рассмотрим укладку графа <tex>G</tex> на сфере. Возьмем на сфере точку <tex>N</tex>, не лежащую на ребре, и не вершину. Выберем на сфере точку <tex>S</tex> противолежащую <tex>N</tex> (<tex>N</tex> и <tex>S</tex> лежат на одном диаметре и при этом не совпадают). Проведем через точку <tex>S</tex> касательную к сфере плоскость. Спроектируем на плоскость все точки сферы, проведя все возможные лучи из точки <tex>N</tex> через точки сферы до пересечения с плоскостью (рис. 1) . Ясно, что эта проекция дает укладку графа <tex>G</tex> на плоскости. | ||
− | [[Файл: Sphere_1.png| | + | [[Файл: Sphere_1.png|300px|thumb|center|рис. 1. Проекция графа со сферы на плоскость. <tex>S</tex> {{---}} точка касания, <tex>N</tex> {{---}} противоположная точка.]] |
Версия 00:36, 12 марта 2012
Теорема (об укладке графа с планарными компонентами реберной двусвязности): | ||||||||||||
Доказательство: | ||||||||||||
Докажем для начала ряд вспомогательных лемм.
Докажем утверждение теоремы для одной из компонент связности графа леммы и из связности получаем, что — дерево. . Ясно, что имея укладки на плоскости каждой из компонент связности графа, мы можем получить укладку на плоскости и всего графа. Итак пусть граф связен. Рассмотрим связный подграф графа компонент реберной двусвязности графа . ИзДокажем индукцией по числу вершин в графе , что подграф графа состоящий из компонент реберной двусвязности и мостов графа принадлежащих графу планарен (далее будем говорить, что соответствует ).База индукции. Если , то граф — тривиальный граф. Его единственная вершина - это компонента реберной двусвязности графа , которая по условию теоремы планарна.Индукционный переход. Пусть утверждение верно для . Рассмотрим , для которого , и соответствующий подграф графа . Докажем, что планарен.Положим — компонента реберной двусвязности графа являющийся висячей вершиной дерева , a — мост в инцидентный в (рис. 3). планарен по условию теоремы, т.к. компоненты реберной двусвязности графа совпадают с компонентами реберной двусвязности графа . Далее рассмотрим подграф графа , соответствующий дереву . Поскольку — висячая вершина , то связен, и, очевидно, также как и является подграфом графа компонент реберной двусвязности . Итак планарен по предположению индукции, т.к. . Из определения ребер графа компонент реберной двусвязности получаем, что графы и соединены в графе единственным мостом инцидентным блоку в дереве . Поскольку , то и . Покажем как из укладок и получить укладку .Уложим лемме II это возможно, рис. 4). Если такого ребра не существует, значит компонента реберной двусвязности — тривиальный граф, в таком случае возьмем любую укладку на плоскости. Пусть — вершина инцидентная . Сожмем часть плоскости, содержащую укладку , так, чтобы она вмещалась в одну из граней укладки смежную с . Проведем жорднанову кривую, соответствующую ребру , от вершины к инцидентной вершине графа так, чтобы она не пересекалась с укладками и . Мы получили укладку графа на сфере, а значит (по лемме I) планарен, следовательно предположение индукции верно. на сфере и уложим на плоскости так, чтобы ребро смежное с в G' (если таковое имеется) оказалось на границе внешней грани (по
| ||||||||||||
Замечание. В доказательстве теоремы непосредственно указывается способ получения укладки графа
из укладок его компонент реберной двусвязности.Источники
- Асанов М. О., Баранский В. А., Расин В. В. Дискретная математика: графы, матроиды, алгоритмы — НИЦ РХД, 2001. — 288 с. — ISBN 5-93972-076-5
- H. Whitney Non-separable and planar graphs — Trans. Amer. Math. Soc., 1932.