Интеграл Фейера — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Новая страница: «{{В разработке}} {{Определение |definition = Определим так называемые '''суммы Фейера''', как сред...»)
 
Строка 2: Строка 2:
  
 
{{Определение
 
{{Определение
|definition = Определим так называемые '''суммы Фейера''', как среднее арифметическое сумм Фурье.
+
|definition = Определим, так называемые, '''суммы Фейера''', как среднее арифметическое сумм Фурье.
 
<tex>\sigma_n(f,x) = \frac{1}{n+1}\sum\limits_{k=0}^{n}S_n(f,x)</tex>
 
<tex>\sigma_n(f,x) = \frac{1}{n+1}\sum\limits_{k=0}^{n}S_n(f,x)</tex>
 
}}
 
}}

Версия 23:17, 15 марта 2012

Эта статья находится в разработке!


Определение:
Определим, так называемые, суммы Фейера, как среднее арифметическое сумм Фурье. [math]\sigma_n(f,x) = \frac{1}{n+1}\sum\limits_{k=0}^{n}S_n(f,x)[/math]

Подставим в эту формулу интеграл Дирихле: [math]\sigma_n=\frac{1}{n+1}\int\limits_{Q}f(x+t)D_n(t)dt = \int\limits_{Q}f(x)\frac{1}{n+1}\sum\limits_{k=0}^{n}D_k(t)dt[/math]

Определение:
Ядро Фейера - [math]\Phi_n(t)=\frac{1}{n+1}\sum\limits_{k=0}^{n}D_k(t)[/math]

Пользуясь определением, запишем [math]\sigma_k(f,x)=\int\limits_{Q}f(x+t)\Phi_n(t)dt\lt /tex\lt tex\gt [/math]. Так как ядро Дирихле четное, то по формуле, ядро Фейера тоже четное. Заинтегрируем по [math]Q[/math] ядро Фейера: [math]\int\limits_{Q}\Phi_n(t)dt=\frac{1}{n+1}\sum\limits_{k=0}^{n}\int\limits_{Q}D_k(t)dt = 1[/math], то есть ядро Фейера нормированно [math]1[/math]. Поступая аналогично ядру Дирихле, можно придти к выводу [math]\sigma_n(f,x)-S = \int\limits_{Q}(f(x+t)-f(x-t)-2S)\Phi_n(t)dt[/math] — основная формула для исследования сумм Фейера в индивидуальной точке. Найдем замкнутое выражение для ядра Фейера.

Утверждение:
[math]\Phi_n=\frac{1}{2\pi(n+1)}(\frac{\sin{(\frac{n+1}{2})t}}{\sin{\frac{t}{2}}})^2[/math]
[math]\triangleright[/math]

[math]\Phi_n(t)=\frac{1}{n+1}\sum\limits_{k=0}^{n}\frac{1}{2\pi}\frac{\sin{(k+\frac{1}{2})t}}{\sin{\frac{t}{2}}}=\frac{1}{2\pi(n+1)}\frac{1}{\sin{\frac{t}{2}}}\sum\limits_{k=0}^{n}(\sin{k+\frac{1}{2}}t\sin{\frac{t}{2}})=[/math]

[math] \frac{1}{2\pi(n+1)}\frac{1}{\sin{\frac{t}{2}}}\sum\limits_{k=0}^{n}\frac{1}{2}(\cos{kt}-\cos{(k+1)t})=\frac{1}{2\pi(n+1)}\frac{1-\cos{(n+1)t}}{2\sin^2{\frac{t}{2}}}=\frac{1}{2\pi(n+1)}\frac{\sin^2{\frac{n+1}{2}t}}{\sin^2{\frac{t}{2}}}[/math]
[math]\triangleleft[/math]

Из этой формулы видно, что ядро Фейера неотрицательно, в отличии от ядра Дирихле.

Определение:
[math]\int\limits_{Q}|D_n(t)|dt[/math] называется константой Лебега
Утверждение:
[math]\int\limits_{Q}|D_n(t)|dt \sim \ln{n}[/math] при больших [math]n[/math]

Именно с этим фактом связана трудность исследования рядов Фурье в индивидуальной точке, в отличии от сумм Фейера, где ядро положительно и условия сходимости выписываются проще.

Поясним смысл сумм Фейера: в свое время, рассматривая числовые ряды, мы говорили, что [math]\sum\limits_{k=1}^{\infty}a_k = \lim\limits_{n \to \infty}S_n[/math], где [math]S_n=\sum\limits_{k=1}^{n}a_n[/math]. Для расходящихся рядов, можно применять обобщенные методы суммирования, главное, чтобы выполнялись свойства перманентности и эффективности. К примеру, если [math]\sigma_n=\frac{1}{n}\sum\limits_{n=1}^{\infty}S_k \to S[/math], то [math]\sum\limits_{n=1}^{\infty}a_n = S[/math] по методу средних арифметических. В точно таком же смысле, если взять ряд Фурье: [math]\frac{a_0}{2}+\sum\limits_{n=1}^{\infty}(a_n\cos{nx}+b_n\sin{nx})=\lim\limits_{n \to \infty}S_n(f,x)=\lim\limits_{n \to \infty}\sigma_n(f,x) (с.а.)[/math], в этом состоит смысл введения сумм Фейера.