Уравнение Пелля — различия между версиями
| Строка 8: | Строка 8: | ||
|proof= | |proof= | ||
Рассматриваем <tex>x,y>0</tex>, остальные корни получатся из симметрии. Так как <tex>\sqrt{d}\geqslant 1</tex>, то <tex>x>y>0</tex>. | Рассматриваем <tex>x,y>0</tex>, остальные корни получатся из симметрии. Так как <tex>\sqrt{d}\geqslant 1</tex>, то <tex>x>y>0</tex>. | ||
| − | <tex>x+\sqrt{d}y>2y</tex> | + | <tex>x+\sqrt{d}y>2y</tex>. Следовательно <tex>1=x^2-dy^2=(x-\sqrt{d}y)(x+sqrt{d}y)>(x-\sqrt{d}y)2y</tex>. Разделим обе части на <tex>2y^2</tex> получим : |
| + | <tex>\frac{x}{y}-\sqrt{d} < \frac{1}{2y^2}</tex>. Значит по теореме о приближении <tex>\frac{x}{y}</tex> является подходящей дробью для <tex>\sqrt{d}</tex>. | ||
}} | }} | ||
Версия 16:20, 28 июня 2010
| Определение: |
| Уравнение вида , где не является квадратом, называется уравнением Пелля |
| Теорема: |
Любое решение уравнения Пелля - подходящая дробь для . |
| Доказательство: |
|
Рассматриваем , остальные корни получатся из симметрии. Так как , то . . Следовательно . Разделим обе части на получим : . Значит по теореме о приближении является подходящей дробью для . |