Splay-дерево — различия между версиями
Lirik (обсуждение | вклад) |
Lirik (обсуждение | вклад) |
||
Строка 6: | Строка 6: | ||
===Splay=== | ===Splay=== | ||
"Splay" так же как и "Move to Root" перетаскивает вершину в корень дерева, но при этом она использует другую последовательность поворотов. Эти повороты можно совершать в прямом и обратном порядке в зависимости от задачи, что иллюстрируют рисунки. Пока <tex> x </tex> не является корнем дерева выполняется следующее : | "Splay" так же как и "Move to Root" перетаскивает вершину в корень дерева, но при этом она использует другую последовательность поворотов. Эти повороты можно совершать в прямом и обратном порядке в зависимости от задачи, что иллюстрируют рисунки. Пока <tex> x </tex> не является корнем дерева выполняется следующее : | ||
− | + | * Zig. Если <tex> p(x) </tex> - корень дерева, то совершаем один поворот вокруг ребра <tex> \langle x, p(x) \rangle </tex>, делая <tex> x </tex> корнем дерева. Данный случай является крайним и выполняется только один раз в конце, если изначальная глубина <tex> x </tex> была нечетной. На рисунке представлен пример работы zig, где <tex>a</tex> является предком <tex>b</tex>. | |
[[file:zig.jpg|500px|Zig - поворот]] | [[file:zig.jpg|500px|Zig - поворот]] | ||
− | + | * Zig-Zig. Если <tex> p(x) </tex> - не корень дерева, а <tex> x </tex> и <tex> p(x) </tex> - оба левые или оба правые дети, то делаем поворот ребра <tex> \langle p(x), p(p(x)) \rangle </tex>, а затем поворот ребра <tex> \langle x, p(x) \rangle </tex>. На рисунке первый поворот есть поворот ребра между вершинами <tex>a</tex> и <tex>c</tex>, а второй {{---}} между <tex>a</tex> и <tex>b</tex>. | |
[[file:Zigzig.PNG|500px|Zig-zig - поворот]] | [[file:Zigzig.PNG|500px|Zig-zig - поворот]] | ||
− | + | * Zig-Zag. Если <tex> p(x) </tex> - не корень дерева и <tex> x </tex> - левый ребенок, а <tex> p(x) </tex> - правый, или наоборот, то делаем поворот вокруг ребра <tex> \langle x, p(x) \rangle </tex>, а затем поворот нового ребра <tex> \langle x, p(x) \rangle </tex>, где <tex> p(x) </tex> - новый родитель <tex> x </tex>: первый поворот ребра между <tex>a</tex> и <tex>b</tex>, а второй между <tex>b</tex> и <tex>c</tex>, для поворота направо, и первый поворот ребра между <tex>c</tex> и <tex>b</tex>, а второй между <tex>b</tex> и <tex>a</tex>, для поворота налево. | |
[[file:zigzag.PNG|500px|Zig-zag - поворот]] | [[file:zigzag.PNG|500px|Zig-zag - поворот]] | ||
Строка 16: | Строка 16: | ||
===Find=== | ===Find=== | ||
− | + | Эта операция выполняется как для обычного бинарного дерева, только после нее запускается операция Splay. | |
===Merge=== | ===Merge=== |
Версия 20:05, 8 апреля 2012
Сплей-дерево (Splay-tree) — двоичное дерево поиска, позволяющее находить быстрее те данные, которые использовались недавно. Относится к разряду сливаемых деревьев. Сплей-дерево было придумано Робертом Тарьяном и Даниелем Слейтером в 1983 году.
Основной идеей работы дерева является перетаскивание найденной вершины в корень почти после каждой операции. Для
- предка вершины эвристика "Move to Root" совершает повороты вокруг ребра , пока не окажется корнем дерева. Данный поворот аналогичен zig - повороту.Содержание
Операции со splay-деревом
Splay
"Splay" так же как и "Move to Root" перетаскивает вершину в корень дерева, но при этом она использует другую последовательность поворотов. Эти повороты можно совершать в прямом и обратном порядке в зависимости от задачи, что иллюстрируют рисунки. Пока
не является корнем дерева выполняется следующее :- Zig. Если - корень дерева, то совершаем один поворот вокруг ребра , делая корнем дерева. Данный случай является крайним и выполняется только один раз в конце, если изначальная глубина была нечетной. На рисунке представлен пример работы zig, где является предком .
- Zig-Zig. Если - не корень дерева, а и - оба левые или оба правые дети, то делаем поворот ребра , а затем поворот ребра . На рисунке первый поворот есть поворот ребра между вершинами и , а второй — между и .
- Zig-Zag. Если - не корень дерева и - левый ребенок, а - правый, или наоборот, то делаем поворот вокруг ребра , а затем поворот нового ребра , где - новый родитель : первый поворот ребра между и , а второй между и , для поворота направо, и первый поворот ребра между и , а второй между и , для поворота налево.
Данная операция занимает
времени, где - длина пути от до корня. В результате этой операции становится корнем дерева, а расстояние до корня от каждой вершины сокращается примерно пополам, что связано с разделением случаев "zig-zig" и "zig-zag".Find
Эта операция выполняется как для обычного бинарного дерева, только после нее запускается операция Splay.
Merge
Merge(
, ). У нас есть два дерева и , причём подразумевается, что все элементы первого дерева меньше элементов второго. Запускаем Splay от самого большого элемента в дереве (пусть это элемент ). После этого корень содержит элемент , при этом у него нет правого ребёнка. Делаем правым поддеревом и возвращаем полученное дерево.Split
Split(
, ). Запускаем Splay от элемента и возвращаем два дерева, полученные отсечением правого или левого поддерева от корня, в зависимости от того, содержит корень элемент больше или не больше, чем .Add
Add(
, ). Запускаем Split( , ), который нам возвращает деревья и , их подвешиваем к как левое и правое поддеревья соответственно.Remove
Remove(
, ). Запускаем Splay от -го элемента и возвращаем Merge от его детей.Анализ операции splay
Амортизационный анализ сплей-дерева проводится с помощью метода потенциалов. Потенциалом рассматриваемого дерева назовём сумму рангов его вершин. Ранг вершины
— это величина, обозначаемая и равная , где — количество вершин в поддереве с корнем в .Лемма: |
Амортизированное время операции splay вершины в дереве с корнем не превосходит |
Доказательство: |
Проанализируем каждый шаг операции splay. Пусть и — ранги вершин после шага и до него соответственно, — предок вершины , а — предок (если есть).Разберём случаи в зависимости от типа шага: Zig. Поскольку выполнен один поворот, то время амортизированное время выполнения шага (поскольку только у вершин и меняется ранг). Ранг вершины уменьшился, поэтому . Ранг вершины увеличился, поэтому . Следовательно, .Zig-zig. Выполнено два поворота, амортизированное время выполнения шага . Поскольку после поворотов поддерево с корнем в будет содержать все вершины, которые были в поддереве с корнем в (и только их), поэтому . Используя это равенство, получаем: , поскольку .Далее, так как , получаем, что .Мы утверждаем, что эта сумма не превосходит , то есть, что . Преобразуем полученное выражение следующим образом: .Из рисунка видно, что , значит, сумма выражений под логарифмами не превосходит единицы. Далее, рассмотрим сумму логарифмов . При произведение по неравенству между средними не превышает . А поскольку логарифм - функция возрастающая, то , что и является требуемым неравенством.Zig-zag. Выполнено два поворота, амортизированное время выполнения шага . Поскольку , то . Далее, так как , то .Мы утверждаем, что эта сумма не превосходит , то есть, что . Но, поскольку - аналогично доказанному ранее, что и требовалось доказать.Итого, получаем, что амортизированное время шага zig-zag не превосходит Поскольку за время выполнения операции splay выполняется не более одного шага типа zig, то суммарное время не будет превосходить . , поскольку утроенные ранги промежуточных вершин сокращаются (входят в сумму как с плюсом, так и с минусом). |
Литература
- Daniel Sleator, Robert Tarjan "A data structure for dynamic trees"