Уравнение Пелля — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
Строка 1: Строка 1:
 +
{{В разработке}}
 +
 
{{Определение
 
{{Определение
 
|definition=
 
|definition=

Версия 12:57, 29 июня 2010

Эта статья находится в разработке!


Определение:
Уравнение вида [math]x^2-dy^2=1[/math], где [math]d\in\mathbb{N}[/math] не является квадратом, называется уравнением Пелля
Теорема:
Любое решение уравнения Пелля - подходящая дробь для [math]\sqrt{d}[/math].
Доказательство:
[math]\triangleright[/math]

Рассматриваем [math]x,y\gt 0[/math], остальные корни получатся из симметрии. Так как [math]\sqrt{d}\geqslant 1[/math], то [math]x\gt y\gt 0[/math]. [math]x+\sqrt{d}y\gt 2y[/math]. Следовательно [math]1=x^2-dy^2=(x-\sqrt{d}y)(x+sqrt{d}y)\gt (x-\sqrt{d}y)2y[/math]. Разделим обе части на [math]2y^2[/math] получим :

[math]\frac{x}{y}-\sqrt{d} \lt \frac{1}{2y^2}[/math]. Значит по теореме о приближении [math]\frac{x}{y}[/math] является подходящей дробью для [math]\sqrt{d}[/math].
[math]\triangleleft[/math]