Укладка графа с планарными компонентами рёберной двусвязности — различия между версиями
Строка 14: | Строка 14: | ||
Рассмотрим укладку графа <tex>G</tex> на сфере. Возьмем на сфере точку <tex>N</tex>, не лежащую на ребре, и не вершину. Выберем на сфере точку <tex>S</tex> противолежащую <tex>N</tex> (<tex>N</tex> и <tex>S</tex> лежат на одном диаметре и при этом не совпадают). Проведем через точку <tex>S</tex> касательную к сфере плоскость. Спроектируем на плоскость все точки сферы, проведя все возможные лучи из точки <tex>N</tex> через точки сферы до пересечения с плоскостью (рис. 1) . Ясно, что эта проекция дает укладку графа <tex>G</tex> на плоскости. | Рассмотрим укладку графа <tex>G</tex> на сфере. Возьмем на сфере точку <tex>N</tex>, не лежащую на ребре, и не вершину. Выберем на сфере точку <tex>S</tex> противолежащую <tex>N</tex> (<tex>N</tex> и <tex>S</tex> лежат на одном диаметре и при этом не совпадают). Проведем через точку <tex>S</tex> касательную к сфере плоскость. Спроектируем на плоскость все точки сферы, проведя все возможные лучи из точки <tex>N</tex> через точки сферы до пересечения с плоскостью (рис. 1) . Ясно, что эта проекция дает укладку графа <tex>G</tex> на плоскости. | ||
− | [[Файл: Planar_edge_biconnected_1.png| | + | [[Файл: Planar_edge_biconnected_1.png|390px|thumb|center|рис. 1. Проекция графа со сферы на плоскость. <tex>S</tex> {{---}} точка касания, <tex>N</tex> {{---}} противоположная точка.]] |
Строка 29: | Строка 29: | ||
Возьмем укладку графа на сфере. Перенесем эту укладку графа на сфере в укладку на плоскости так как это сделано в [[#l1|лемме I]], за точку <tex>N</tex> возьмем точку на сфере, не лежащую на ребре, не являющуюся вершиной и принадлежащую грани на границе которой лежит выделенное ребро. Полученная укладка на плоскости обладает нужным нам свойством (рис. 2). | Возьмем укладку графа на сфере. Перенесем эту укладку графа на сфере в укладку на плоскости так как это сделано в [[#l1|лемме I]], за точку <tex>N</tex> возьмем точку на сфере, не лежащую на ребре, не являющуюся вершиной и принадлежащую грани на границе которой лежит выделенное ребро. Полученная укладка на плоскости обладает нужным нам свойством (рис. 2). | ||
− | [[Файл: Planar_edge_biconnected_2.png| | + | [[Файл: Planar_edge_biconnected_2.png|220px|thumb|center|рис. 2.]] |
}} | }} | ||
Строка 51: | Строка 51: | ||
Из определения ребер графа компонент реберной двусвязности получаем, что графы <tex>G_1</tex> и <tex>G_2</tex> соединены в графе <tex>G'</tex> единственным мостом <tex>e \in G'</tex> инцидентным блоку <tex>G_1</tex> в дереве <tex>T</tex>. Поскольку <tex>T = G_1\cup e\cup G_2</tex>, то и <tex>G' = G_1\cup e\cup G_2</tex>. Покажем как из укладок <tex>G_1</tex> и <tex>G_2</tex> получить укладку <tex>G'</tex>. | Из определения ребер графа компонент реберной двусвязности получаем, что графы <tex>G_1</tex> и <tex>G_2</tex> соединены в графе <tex>G'</tex> единственным мостом <tex>e \in G'</tex> инцидентным блоку <tex>G_1</tex> в дереве <tex>T</tex>. Поскольку <tex>T = G_1\cup e\cup G_2</tex>, то и <tex>G' = G_1\cup e\cup G_2</tex>. Покажем как из укладок <tex>G_1</tex> и <tex>G_2</tex> получить укладку <tex>G'</tex>. | ||
− | [[Файл: Planar_edge_biconnected_3.png| | + | [[Файл: Planar_edge_biconnected_3.png|240px|thumb|center|рис. 3. Удаление <tex>G_1</tex> из графа компонент реберной двусвязности]] |
Уложим <tex>G_2</tex> на сфере и уложим <tex>G_1</tex> на плоскости так, чтобы ребро <tex>e_1 \in G_1</tex> смежное с <tex>e</tex> в G' (если таковое имеется) оказалось на границе внешней грани (по [[#l2|лемме II]] это возможно, рис. 4). Если такого ребра <tex>e_1</tex> не существует, значит компонента реберной двусвязности <tex>G_1</tex> — тривиальный граф, в таком случае возьмем любую укладку <tex>G_1</tex> на плоскости. Пусть <tex>u\in G_2</tex> {{---}} вершина инцидентная <tex>e</tex>. Сожмем часть плоскости, содержащую укладку <tex>G_1</tex>, так, чтобы она вмещалась в одну из граней укладки <tex>G_2</tex> смежную с <tex>u</tex>. Проведем жорднанову кривую, соответствующую ребру <tex>e</tex>, от вершины <tex>u</tex> к инцидентной <tex>e</tex> вершине графа <tex>G_1</tex> так, чтобы она не пересекалась с укладками <tex>G_1</tex> и <tex>G_2</tex>. Мы получили укладку графа <tex>G'</tex> на сфере, а значит (по [[#l1|лемме I]]) <tex>G'</tex> планарен, следовательно предположение индукции верно. | Уложим <tex>G_2</tex> на сфере и уложим <tex>G_1</tex> на плоскости так, чтобы ребро <tex>e_1 \in G_1</tex> смежное с <tex>e</tex> в G' (если таковое имеется) оказалось на границе внешней грани (по [[#l2|лемме II]] это возможно, рис. 4). Если такого ребра <tex>e_1</tex> не существует, значит компонента реберной двусвязности <tex>G_1</tex> — тривиальный граф, в таком случае возьмем любую укладку <tex>G_1</tex> на плоскости. Пусть <tex>u\in G_2</tex> {{---}} вершина инцидентная <tex>e</tex>. Сожмем часть плоскости, содержащую укладку <tex>G_1</tex>, так, чтобы она вмещалась в одну из граней укладки <tex>G_2</tex> смежную с <tex>u</tex>. Проведем жорднанову кривую, соответствующую ребру <tex>e</tex>, от вершины <tex>u</tex> к инцидентной <tex>e</tex> вершине графа <tex>G_1</tex> так, чтобы она не пересекалась с укладками <tex>G_1</tex> и <tex>G_2</tex>. Мы получили укладку графа <tex>G'</tex> на сфере, а значит (по [[#l1|лемме I]]) <tex>G'</tex> планарен, следовательно предположение индукции верно. | ||
− | [[Файл: Planar_edge_biconnected_4.png|thumb| | + | [[Файл: Planar_edge_biconnected_4.png|thumb|220px|center|рис. 4. Укладка <tex>G_1</tex> и <tex>G_2</tex> на сфере]] |
</div> | </div> | ||
Версия 10:37, 24 апреля 2012
Теорема (об укладке графа с планарными компонентами реберной двусвязности): | ||||||||||||
Доказательство: | ||||||||||||
Докажем для начала ряд вспомогательных лемм.
Докажем утверждение теоремы для одной из компонент связности графа леммы и из связности получаем, что — дерево. . Ясно, что имея укладки на плоскости каждой из компонент связности графа, мы можем получить укладку на плоскости и всего графа. Итак пусть граф связен. Рассмотрим связный подграф графа компонент реберной двусвязности графа . ИзДокажем индукцией по числу вершин в графе , что подграф графа состоящий из компонент реберной двусвязности и мостов графа принадлежащих графу планарен (далее будем говорить, что соответствует ).База индукции. Если , то граф — тривиальный граф. Его единственная вершина - это компонента реберной двусвязности графа , которая по условию теоремы планарна.Индукционный переход. Пусть утверждение верно для . Рассмотрим , для которого , и соответствующий подграф графа . Докажем, что планарен.Положим — компонента реберной двусвязности графа являющийся висячей вершиной дерева , a — мост в инцидентный в (рис. 3). планарен по условию теоремы, т.к. компоненты реберной двусвязности графа совпадают с компонентами реберной двусвязности графа . Далее рассмотрим подграф графа , соответствующий дереву . Поскольку — висячая вершина , то связен, и, очевидно, также как и является подграфом графа компонент реберной двусвязности . Итак планарен по предположению индукции, т.к. . Из определения ребер графа компонент реберной двусвязности получаем, что графы и соединены в графе единственным мостом инцидентным блоку в дереве . Поскольку , то и . Покажем как из укладок и получить укладку .Уложим лемме II это возможно, рис. 4). Если такого ребра не существует, значит компонента реберной двусвязности — тривиальный граф, в таком случае возьмем любую укладку на плоскости. Пусть — вершина инцидентная . Сожмем часть плоскости, содержащую укладку , так, чтобы она вмещалась в одну из граней укладки смежную с . Проведем жорднанову кривую, соответствующую ребру , от вершины к инцидентной вершине графа так, чтобы она не пересекалась с укладками и . Мы получили укладку графа на сфере, а значит (по лемме I) планарен, следовательно предположение индукции верно. на сфере и уложим на плоскости так, чтобы ребро смежное с в G' (если таковое имеется) оказалось на границе внешней грани (по
| ||||||||||||
Замечание. В доказательстве теоремы непосредственно указывается способ получения укладки графа
из укладок его компонент реберной двусвязности.Источники
- Асанов М. О., Баранский В. А., Расин В. В. Дискретная математика: графы, матроиды, алгоритмы — НИЦ РХД, 2001. — 288 с. — ISBN 5-93972-076-5
- H. Whitney Non-separable and planar graphs — Trans. Amer. Math. Soc., 1932.