Слово Туэ-Морса — различия между версиями
м (→Свойства и эквивалентные определения) |
(→Свойства и эквивалентные определения) |
||
Строка 23: | Строка 23: | ||
{{Теорема | {{Теорема | ||
|statement= | |statement= | ||
− | Пусть <tex>\varphi</tex> — морфизм, инвертирующий символы | + | Пусть <tex>\varphi</tex> — морфизм, инвертирующий символы: |
+ | <tex>\varphi(x) = \left\{ \begin{array}{rl} | ||
+ | b, & x = a \\ | ||
+ | a, & x = b, \\ | ||
+ | \end{array} \right.</tex> | ||
+ | |||
+ | тогда для строк Туэ-Морса верно следующее соотношение: <tex>T_{n + 1} = T_n \varphi(T_n)</tex> | ||
|proof= | |proof= | ||
Заметим, что соответсвующие индексы символов при приписывании новой строки к строке <tex>T_n</tex> получаются добавлением к индексам <tex>i = 0, 1, \dots, 2^n - 1</tex> числа <tex>2^n</tex>. Количество единиц в двоичной записи числа <tex>i + 2^n</tex> ровно на один больше, чем в двоичной записи числа <tex>i</tex>. Поэтому приписываемая строка есть ни что иное, как исходная строка с инвертированными символами. | Заметим, что соответсвующие индексы символов при приписывании новой строки к строке <tex>T_n</tex> получаются добавлением к индексам <tex>i = 0, 1, \dots, 2^n - 1</tex> числа <tex>2^n</tex>. Количество единиц в двоичной записи числа <tex>i + 2^n</tex> ровно на один больше, чем в двоичной записи числа <tex>i</tex>. Поэтому приписываемая строка есть ни что иное, как исходная строка с инвертированными символами. | ||
Строка 30: | Строка 36: | ||
Данная теорема позволяет определять последовательность строк Туэ-Морса следующим образом: <tex>T_0 = a</tex>, <tex>T_{n + 1} = T_n \varphi(T_n)</tex>. | Данная теорема позволяет определять последовательность строк Туэ-Морса следующим образом: <tex>T_0 = a</tex>, <tex>T_{n + 1} = T_n \varphi(T_n)</tex>. | ||
− | Часто рассматривают предельный случай — бесконечную строку Туэ-Морса, любой символ которой можно получить из обычной строки Туэ-Морса с достаточно большим номером. Бесконечную строку также можно задать с помощью правил ассоциативного исчисления, клеточного автомата, рекурсивных соотношений | + | Часто рассматривают предельный случай — бесконечную строку Туэ-Морса, любой символ которой можно получить из обычной строки Туэ-Морса с достаточно большим номером. Бесконечную строку также можно задать с помощью правил ассоциативного исчисления, клеточного автомата, рекурсивных соотношений. |
== Ссылки == | == Ссылки == |
Версия 13:02, 7 мая 2012
Определение: |
Определим последовательность строк
| над двухбуквенным алфавитом следующим образом: , где:
Примеры
Приведём первые пять строк Туэ-Морса:
Свойства и эквивалентные определения
Как видно из определения, символ на
-ой позиции не зависит от номера строки. Так как длина строк возрастает, каждая строка является собственным префиксом следующей, поэтому можно рассматривать получение следующей строки как приписывание к текущей строке некоторой другой строки.Теорема: |
Пусть — морфизм, инвертирующий символы:
тогда для строк Туэ-Морса верно следующее соотношение: |
Доказательство: |
Заметим, что соответсвующие индексы символов при приписывании новой строки к строке | получаются добавлением к индексам числа . Количество единиц в двоичной записи числа ровно на один больше, чем в двоичной записи числа . Поэтому приписываемая строка есть ни что иное, как исходная строка с инвертированными символами.
Данная теорема позволяет определять последовательность строк Туэ-Морса следующим образом:
, .Часто рассматривают предельный случай — бесконечную строку Туэ-Морса, любой символ которой можно получить из обычной строки Туэ-Морса с достаточно большим номером. Бесконечную строку также можно задать с помощью правил ассоциативного исчисления, клеточного автомата, рекурсивных соотношений.