184
правки
Изменения
→Ушной метод
* Вершина <tex>v_j</tex> принадлежит последовательной цепи вершин, добавленных в <tex>S</tex>. Вынем из стека верхнюю вершину <tex>v_{s1}</tex> — она уже соединена с <tex>v_{j}</tex> одной из сторон <tex>P</tex>. Затем будем пытаться выстраивать диагонали, соединяющие <tex>v_{j}</tex> c вынимаемыми из стека вершинами пока это возможно. Проверку на возможность построения диагонали <tex>v_{j}v_{k}</tex>, где <tex>v_{k}</tex> — текущая верхняя вершина стека, можно осуществлять посредством изучения взаимного расположения предыдущей вершины, вынутой из <tex>S</tex>, относительно <tex>v_{j}v_{k}</tex>. Когда мы достигнем вершины <tex>v_{k}</tex>, до которой невозможно провести диагональ, положим предыдущую вершину <tex>v_{k-1}</tex> обратно в стек. Вершина <tex>v_{k-1}</tex> является либо последней, до которой было возможно провести диагональ, либо, если ни одной диагонали из <tex>v_{j}</tex> провести не удалось, — соседом <tex>v_{j}</tex>. Далее положим <tex>v_{j}</tex> в стек. Опять же инвариант непротриангулированной части <tex>P</tex> сохраняется: одна сторона воронки ограничена частью стороны многоугольника, а другая цепью невыпуклых вершин.
[[Файл:Triang alg case2.jpg|500px|thumb|center|Второй случай. Синим помечена цепь из вершин, которая содержится в стеке <tex>S</tex> на момент достижения вершины <tex>v_j</tex>, рыжей помечена первая вершина, до которой невозможно провести диагональ, жёлтой помечена новая нетриангулированная область <tex>P</tex> в форме воронки]]
===== Псевдокод =====
==== Прочие случаи ====
[[Файл:Monotone with holes.png|350px|thumb|right|Пример отверстия в форме монотонного многоугольника. У него обязательно будут существовать start и end вершина, если рассматривать его как обычный многоугольник. Однако, когда он станет полигональным отверстием, в силу определения start и end вершины обратятся в split и merge, которые соединятся с какими-то вершинами внешнего контура]]
Алгоритм так же работает и для частных случаев, например для многоугольника с полигональным отверстием. Такой многоугольник будет поделен на части без отверстий и будет успешно триангулирован. Это обуславливается тем, что хотя бы две вершины, принадлежащих отверстию будут split и merge (см. рисунок). Диагональ от таких вершин можно провести только до вершин внешнего контура, а поскольку у внутреннего отверстия хотя бы одна split и одна merge вершина весь многоугольник будет разделён как минимум на две части.
=== Ушной метод ===