Теоремы о временной и ёмкостной иерархиях — различия между версиями
Строка 10: | Строка 10: | ||
|proof= | |proof= | ||
Понятно, что <tex>DSPACE(f(n)) \subseteq DSPACE(g(n))</tex>, поскольку программа, ограниченная по памяти функцией <tex>f</tex>, проходит ограничение <tex>g</tex>.<br /> | Понятно, что <tex>DSPACE(f(n)) \subseteq DSPACE(g(n))</tex>, поскольку программа, ограниченная по памяти функцией <tex>f</tex>, проходит ограничение <tex>g</tex>.<br /> | ||
− | Используя диагональный метод, докажем, что включение строгое. Рассмотрим функцию <tex>h(n)=\sqrt{f(n)g(n)}</tex> и язык <tex>L=\{x|x(x)\Bigr|_{S\leq h(|x|)}\neq 1\}</tex>, где запись <tex>S\leq h(|x|)</tex> означает, что программа запускается с лимитом памяти <tex>h(|x|)</tex>. Иначе говоря, <tex>L</tex> — это язык программ, которые не допускают собственный код, используя | + | Используя диагональный метод, докажем, что включение строгое. Рассмотрим функцию <tex>h(n)=\sqrt{f(n)g(n)}</tex> и язык <tex>L=\{x|x(x)\Bigr|_{S\leq h(|x|)}\neq 1\}</tex>, где запись <tex>S\leq h(|x|)</tex> означает, что программа запускается с лимитом памяти <tex>h(|x|)</tex>. Иначе говоря, <tex>L</tex> — это язык программ, которые не допускают собственный код, используя не более <tex>h(|x|)</tex> памяти. Докажем, что <tex>L\in DSPACE(g(n))\setminus DSPACE(f(n))</tex>.<br/> |
Так как <tex>h(n)=o(g(n))</tex>, то очевидно, что <tex>L \in DSPACE(g(n))</tex>. Действительно, для проверки принадлежности программы <tex>x</tex> языку достаточно запустить её с лимитом памяти <tex>h(|x|)</tex> и проверить, что результат не равен 1. Тогда вся проверка будет выполнена с использованием не более <tex>g(|x|)</tex> памяти в силу конструируемости функций <tex>f</tex> и <tex>g</tex> и накладываемых ограничений на память.<br /> | Так как <tex>h(n)=o(g(n))</tex>, то очевидно, что <tex>L \in DSPACE(g(n))</tex>. Действительно, для проверки принадлежности программы <tex>x</tex> языку достаточно запустить её с лимитом памяти <tex>h(|x|)</tex> и проверить, что результат не равен 1. Тогда вся проверка будет выполнена с использованием не более <tex>g(|x|)</tex> памяти в силу конструируемости функций <tex>f</tex> и <tex>g</tex> и накладываемых ограничений на память.<br /> | ||
Предположим теперь, что <tex>L \in DSPACE(f(n))</tex>. Тогда существует программа <tex>p</tex>, распознающая язык <tex>L</tex> и использующая не более <tex>c \cdot f(n)</tex> памяти. Так как <tex>f(n)=o(h(n))</tex>, то <tex>\exists n_0: \forall n>n_0 \Rightarrow c\cdot f(n)<h(n)</tex>. Будем считать, что <tex>|p|>n_0</tex> (иначе добавим в программу пустые строки, искусственно увеличив её длину), тогда при вызове <tex>p(p)</tex> потребуется не более <tex>h(|p|)</tex> памяти. Выясним, принадлежит ли <tex>p</tex> языку <tex>L</tex>. Допустим, что <tex>p\in L</tex>, тогда <tex>p(p)=1</tex>, значит, <tex>p\notin L</tex> по определению языка <tex>L</tex>. Пусть теперь <tex>p\notin L</tex>. Но тогда <tex>p(p) \ne 1</tex>, следовательно, <tex>p\in L</tex>. | Предположим теперь, что <tex>L \in DSPACE(f(n))</tex>. Тогда существует программа <tex>p</tex>, распознающая язык <tex>L</tex> и использующая не более <tex>c \cdot f(n)</tex> памяти. Так как <tex>f(n)=o(h(n))</tex>, то <tex>\exists n_0: \forall n>n_0 \Rightarrow c\cdot f(n)<h(n)</tex>. Будем считать, что <tex>|p|>n_0</tex> (иначе добавим в программу пустые строки, искусственно увеличив её длину), тогда при вызове <tex>p(p)</tex> потребуется не более <tex>h(|p|)</tex> памяти. Выясним, принадлежит ли <tex>p</tex> языку <tex>L</tex>. Допустим, что <tex>p\in L</tex>, тогда <tex>p(p)=1</tex>, значит, <tex>p\notin L</tex> по определению языка <tex>L</tex>. Пусть теперь <tex>p\notin L</tex>. Но тогда <tex>p(p) \ne 1</tex>, следовательно, <tex>p\in L</tex>. |
Версия 15:36, 31 мая 2012
Определение: |
Функция | называется конструируемой по памяти, если можно вычислить по , используя не более памяти.
Теорема (о емкостной иерархии): |
Пусть даны две конструируемые по памяти функции и такие, что , тогда . |
Доказательство: |
Понятно, что |
Определение: |
Функция | называется конструируемой по времени, если можно вычислить по за время не более .
Теорема (о временной иерархии): |
Пусть даны две конструируемые по времени функции что , тогда . и такие, |
Доказательство: |
Доказательство аналогично доказательству теоремы о емкостной иерархии. |