0-1 принцип — различия между версиями
Igorjan94 (обсуждение | вклад) м (→Второй способ) |
Igorjan94 (обсуждение | вклад) м (→Доказательство 0-1 принципа) |
||
Строка 19: | Строка 19: | ||
Пусть <tex> f: A \rightarrow B </tex> - монотонная. Тогда <tex> \forall a_1, a_2 \in A: f(\min(a_1, a_2)) = \min(f(a_1), f(a_2)) </tex>. | Пусть <tex> f: A \rightarrow B </tex> - монотонная. Тогда <tex> \forall a_1, a_2 \in A: f(\min(a_1, a_2)) = \min(f(a_1), f(a_2)) </tex>. | ||
| proof = | | proof = | ||
− | Не теряя общности, предположим что <tex> a_1 \le a_2 </tex>. Тогда | + | Не теряя общности, предположим что <tex> a_1 \le a_2 </tex>. Тогда <tex> f(\min(a_1, a_2)) = f(a_1) </tex>. Также, по монотонности, <tex> f(a_1) \le f(a_2) </tex>. Тогда <tex> \min(f(a_1), f(a_2)) = f(a_1) </tex>. То есть, |
<tex> f(\min(a_1, a_2)) = \min(f(a_1), f(a_2)) = f(a_1) </tex>. Такие же рассуждения можно провести для случая <tex> a_2 < a_1 </tex>. | <tex> f(\min(a_1, a_2)) = \min(f(a_1), f(a_2)) = f(a_1) </tex>. Такие же рассуждения можно провести для случая <tex> a_2 < a_1 </tex>. | ||
Строка 31: | Строка 31: | ||
{{Лемма | {{Лемма | ||
| statement = | | statement = | ||
− | Пусть <tex> f: A \rightarrow B </tex> | + | Пусть <tex> f: A \rightarrow B </tex> — монотонная, а <tex> N </tex> — сеть компараторов. |
− | Тогда <tex> N </tex> и <tex> f </tex> коммутируют, | + | Тогда <tex> N </tex> и <tex> f </tex> коммутируют, то есть <tex> N(f(a)) = f(N(a)) </tex>. Другими словами, неважно, применить сначала <tex> f </tex> к <tex> a </tex> и пропустить через сеть <tex> N </tex>, или пропустить через сеть <tex> N </tex> последовательность <tex> a </tex>, а потом применить монотонную функцию <tex> f </tex>. |
| proof = | | proof = | ||
Рассмотрим произвольный компаратор <tex> [i: j] </tex>, сортирующий элементы <tex> a_i </tex> и <tex> a_j </tex>. Применим его к последовательности <tex> f(a) </tex> и рассмотрим элемент с индексом <tex> i </tex>. | Рассмотрим произвольный компаратор <tex> [i: j] </tex>, сортирующий элементы <tex> a_i </tex> и <tex> a_j </tex>. Применим его к последовательности <tex> f(a) </tex> и рассмотрим элемент с индексом <tex> i </tex>. | ||
Строка 38: | Строка 38: | ||
<tex> [i: j]f(a)_i </tex> <br> <tex>= [i: j](f(a_0), \dots, f(a_{n-1}))_i </tex> (по введенному нами определению) <br> <tex> = \min(f(a_i), f(a_j)) </tex> (по определению компаратора) <br> <tex> = f(\min(a_i, a_j)) </tex> (по уже доказанной лемме) <br> <tex> = f([i: j](a)_i) </tex> (по определению компаратора) <br> <tex> = f([i: j](a))_i </tex>(по введенному нами определению). | <tex> [i: j]f(a)_i </tex> <br> <tex>= [i: j](f(a_0), \dots, f(a_{n-1}))_i </tex> (по введенному нами определению) <br> <tex> = \min(f(a_i), f(a_j)) </tex> (по определению компаратора) <br> <tex> = f(\min(a_i, a_j)) </tex> (по уже доказанной лемме) <br> <tex> = f([i: j](a)_i) </tex> (по определению компаратора) <br> <tex> = f([i: j](a))_i </tex>(по введенному нами определению). | ||
− | То есть | + | То есть в результате <tex> i </tex>-й элемент не зависит от порядка применения компаратора <tex> [i: j] </tex> и функции <tex> f </tex>. Те же рассуждения можно провести для всех других индексов, то есть <tex> [i: j]f(a) = f([i: j](a)) </tex>, и также для всех компараторов в сети, то есть лемма доказана. |
}} | }} | ||
Строка 46: | Строка 46: | ||
| statement = Если сеть компараторов сортирует все последовательности из нулей и единиц, то она сортирующая | | statement = Если сеть компараторов сортирует все последовательности из нулей и единиц, то она сортирующая | ||
| proof = | | proof = | ||
− | Рассмотрим сеть <tex> N </tex> , сортирующую в возрастающем порядке: <tex> a_0 \le a_1 \le \dots \le a_{n-1} </tex>. | + | Рассмотрим сеть <tex> N </tex>, сортирующую в возрастающем порядке: <tex> a_0 \le a_1 \le \dots \le a_{n-1} </tex>. |
− | Предположим, что есть последовательность <tex> a </tex>, которую сеть <tex> N </tex> не сортирует. Тогда после пропуска <tex> a </tex> через сеть <tex> N </tex>, получим последовательность b, в которой найдется индекс <tex> i </tex> такой, что <tex> b_i > b_{i + 1} </tex>. | + | Предположим, что есть последовательность <tex> a </tex>, которую сеть <tex> N </tex> не сортирует. Тогда после пропуска <tex> a </tex> через сеть <tex> N </tex>, получим последовательность <tex> b </tex>, в которой найдется индекс <tex> i </tex> такой, что <tex> b_i > b_{i + 1} </tex>. |
Рассмотрим функцию <tex> f(x) = | Рассмотрим функцию <tex> f(x) = |
Версия 17:51, 31 мая 2012
Есть два способа проверить сеть из n компараторов на то, что она сортирующая.
Первый способ
Первый, наивный способ — перебрать все перестановки из
элементов, пропустить их через сеть и проверить их на то, что они отсортированы. Этот подход потребует действий, где — количество компараторов в сети из элементов. Обычно это количество можно оценить как (сеть Бэтчера). Таким образом, получаем асимптотику , и при проверить сеть очень проблематично.Второй способ
Второй способ основывается на предположении, что если сеть сортирует все последовательности из нулей и единиц, то сеть является сортирующей. Если мы докажем это, то сможем проверять сеть за
, что намного быстрее.Доказательство 0-1 принципа
Определение: |
Функция | из в называется монотонной, если
Лемма: |
Пусть - монотонная. Тогда . |
Доказательство: |
Не теряя общности, предположим что . Тогда . Также, по монотонности, . Тогда . То есть, . Такие же рассуждения можно провести для случая . |
Определение: |
Рассмотрим отображение | и последовательность . Определим как последовательность , то есть
Лемма: |
Пусть — монотонная, а — сеть компараторов.
Тогда и коммутируют, то есть . Другими словами, неважно, применить сначала к и пропустить через сеть , или пропустить через сеть последовательность , а потом применить монотонную функцию . |
Доказательство: |
Рассмотрим произвольный компаратор , сортирующий элементы и . Применим его к последовательности и рассмотрим элемент с индексом .
|
Теорема (0-1 принцип): |
Если сеть компараторов сортирует все последовательности из нулей и единиц, то она сортирующая |
Доказательство: |
Рассмотрим сеть , сортирующую в возрастающем порядке: .Предположим, что есть последовательность Рассмотрим функцию , которую сеть не сортирует. Тогда после пропуска через сеть , получим последовательность , в которой найдется индекс такой, что . . Очевидно, она монотонная. Заметим, что , а , то есть , или - не отсортирована. Так как и коммутируют, - также не отсортирована. Но по предположению теоремы, все последовательности из нулей и единиц сеть сортировать умеет, то есть такой последовательности не найдется, то есть сеть компараторов является сортирующей. |
Источники
- Sorting networks
- Wikipedia - Sorting networks
- Дональд Кнут - Искусство программирования. Том 3. Глава 5.3.4, стр. 249