Сжатое суффиксное дерево — различия между версиями
м (→Количество вершин) |
|||
Строка 26: | Строка 26: | ||
'''Переход''' <tex>n \rightarrow n + 1</tex> | '''Переход''' <tex>n \rightarrow n + 1</tex> | ||
− | + | Возьмем вершину в дереве с <tex>n + 1</tex> листами, у которой два ребенка - листья. Рассмотрим возможные случаи: | |
1) У нее более двух детей. Тогда отрежем от нее лист. Получим дерево с <tex>n</tex> листьями, причем в нем количество внутренних вершин такое же, как в исходном дереве. Но у полученного дерева менее <tex>n</tex> внутренних вершин (т.к. по индукционному предположению для него выполняется условие леммы), значит, для исходного дерева лемма верна. | 1) У нее более двух детей. Тогда отрежем от нее лист. Получим дерево с <tex>n</tex> листьями, причем в нем количество внутренних вершин такое же, как в исходном дереве. Но у полученного дерева менее <tex>n</tex> внутренних вершин (т.к. по индукционному предположению для него выполняется условие леммы), значит, для исходного дерева лемма верна. | ||
− | 2) У нее ровно два ребенка. Отрежем их, получим дерево с <tex>n</tex> листьями, количество внутренних вершин которого на <tex>1</tex> меньше, чем в исходном дереве. Тогда, по индукционному предположению, у него менее <tex>n</tex> внутренних вершин, значит в исходном дереве их меньше <tex>n + 1</tex>. | + | 2) У нее ровно два ребенка. Отрежем их, получим дерево с <tex>n</tex> листьями, количество внутренних вершин которого на <tex>1</tex> меньше, чем в исходном дереве. Тогда, по индукционному предположению, у него менее <tex>n</tex> внутренних вершин, значит, в исходном дереве их меньше <tex>n + 1</tex>. |
}} | }} | ||
Версия 23:11, 31 мая 2012
Суффиксный бор — удобная структура данных для поиска подстроки в строке, но она занимает много места в памяти. Рассмотрим в боре все пути от до , в которых у каждой вершины только один сын. Такой путь можно сжать до ребра , записав на нем все встречающиеся на пути символы. Получилось сжатое суффиксное дерево.
Содержание
Определение
Суффиксное дерево (сжатое суффиксное дерево)
для строки (где ) — дерево с листьями, каждая внутренняя вершина которого имеет не меньше двух детей, а каждое ребро помечено непустой подстрокой строки и символом ее начала. Два ребра, выходящие из одной вершины, не могут иметь одинаковых символьных меток. Такое дерево, как и суффиксный бор, содержит все суффиксы строки , причем каждый суффикс заканчивается точно в листе и нигде кроме него.Защитный символ
По определению суффиксное дерево существует не для любой строки
: если один суффикс строки совпадает с префиксом другого, то построить такое суффиксное дерево невозможно. Например, для строки суффикс является префиксом суффикса Для решения проблемы в конце строки добавляется символ, не входящий в исходный алфавит: защитный символ. Как правило, это . Любой суффикс строки с защитным символом действительно заканчивается в листе и только в листе.Далее
- длина строки с защитным символом.Количество вершин
По определению, в суффиксном дереве содержится
листьев. Рассмотрим количество внутренних вершин такого дерева.Лемма: |
Количество внутренних вершин дерева, каждая из которых имеет не менее двух детей, меньше количества листьев. |
Доказательство: |
Докажем лемму индукцией по количеству листьев .База При в дереве одна внутренняя вершина - верно.Переход Возьмем вершину в дереве с листами, у которой два ребенка - листья. Рассмотрим возможные случаи:1) У нее более двух детей. Тогда отрежем от нее лист. Получим дерево с 2) У нее ровно два ребенка. Отрежем их, получим дерево с листьями, причем в нем количество внутренних вершин такое же, как в исходном дереве. Но у полученного дерева менее внутренних вершин (т.к. по индукционному предположению для него выполняется условие леммы), значит, для исходного дерева лемма верна. листьями, количество внутренних вершин которого на меньше, чем в исходном дереве. Тогда, по индукционному предположению, у него менее внутренних вершин, значит, в исходном дереве их меньше . |
Занимаемая память
Заметим, что для хранения на ребре подстроки используют индексы
ее начала и конца в исходной строке, а не хранят саму строку. Представим теперь дерево как массив , где — количество вершин в дереве, - мощность алфавита. Для любого суффиксного дерева верна предыдущая лемма (у каждой вершины по определению не менее двух детей), значит, . Каждая ячейка содержит информацию о том, в какую вершину ведет ое ребро по ому символу и индексы . Итак, дерево занимает памяти.Построение суффиксного дерева
Рассмотрим наивный алгоритм построения суффиксного дерева:
forto do //для каждого символа строки insert( ) //добавляем суффикс, начинающийся с него
insert(l,r)while ( ) if //если мы не можем пойти из вершины по символу create_vertex( ) //создаем новую вершину else for to //для каждого символа на ребре из текущей вершины if //если нашли не совпадающий символ разбить ребро break if ребро не разбивали //переходим по ребру //двигаемся по суффиксу на длину подстроки, записанной на ребре
Этот алгоритм работает за время алгоритм Укконена, позволяет построить сжатое суффиксное дерево за .
, однакоИспользование сжатого суффиксного дерева
Суффиксное дерево позволяет за линейное время найти:
- Количество различных подстрок данной строки
- Наибольшую общую подстроку двух строк
- Суффиксный массив и массив (longest common prefix) исходной строки
Источники
- Дэн Гасфилд — Строки, деревья и последовательности в алгоритмах: Информатика и вычислительная биология — СПб.: Невский Диалект; БХВ-Петербург, 2003. — 654 с: ил.