Сведение задачи LCA к задаче RMQ — различия между версиями
(→Запрос: fixup) |
(→Сложность: fixup) |
||
Строка 36: | Строка 36: | ||
== Сложность == | == Сложность == | ||
− | Для нахождения минимального элемента на отрезке можно использовать [[Дерево отрезков. Построение|дерево отрезков]]. Длина массива глубин будет равна <tex>(2n - 1) | + | Для нахождения минимального элемента на отрезке можно использовать [[Дерево отрезков. Построение|дерево отрезков]]. Длина массива глубин будет равна <tex>(2n - 1)</tex>, т. е. дерево отрезков можно построить за <tex>O(n).</tex> Таким образом, препроцессинг работает за <tex>O(n).</tex> Время выполнения запроса равно времени запроса минимального элемента на отрезке в дереве отрезков, т. е. <tex>O(\log n).</tex> |
== См.также == | == См.также == |
Версия 00:00, 2 июня 2012
Содержание
Постановка задачи LCA
Определение: |
Наименьшим общим предком (least common ancestor) двух узлов | и в корневом дереве называется узел , который среди всех узлов, являющихся предками как узла , так и , имеет наибольшую глубину.
Пусть дано корневое дерево
. На вход подаются запросы вида , для каждого запроса требуется найти их наименьшего общего предка.Алгоритм
Препроцессинг
1) В каждом узле будет храниться глубина узла в корневом дереве
2) Запустим обход в глубину из корня, который будет строить список посещений узлов. Глубина текущей вершины добавляется в список при входе в эту вершину, а также после каждого возвращения из её сына.
Запрос
Обозначим
— функция, возвращающая любой индекс ячейки в списке глубин , в котором хранится глубина узла . Ее можно строить во время обхода в глубину. Пусть имеется запрос — пара узлов В результате обхода в глубину получился список глубин вершин, в котором наименьшему общему предку вершин соответствует минимальная глубина на отрезке .Доказательство корректности алгоритма
Теорема: |
Наименьшему общему предку вершин соответствует минимальная глубина на отрезке . |
Доказательство: |
Рассмотрим два узла | корневого дерева . Рассмотрим отрезок . Поскольку этот отрезок — путь из в , он проходит через их наименьшего общего предка (в дереве есть только один простой путь между вершинами). Покажем, что его глубина минимальна на отрезке . Допустим обратное. Все потомки имеют глубину больше. Но тогда получим, что поиск в глубину вышел из поддерева вершины раньше, чем посетил вершину .
Пример
Рассмотрим дерево на рисунке 1. Найдем наименьшего общего предка вершин, помеченных красным цветом. Список глубин, получающийся в результате обхода в глубину -
Глубина наименьшего общего предка красных вершин равна минимуму на отрезкеСложность
Для нахождения минимального элемента на отрезке можно использовать дерево отрезков. Длина массива глубин будет равна , т. е. дерево отрезков можно построить за Таким образом, препроцессинг работает за Время выполнения запроса равно времени запроса минимального элемента на отрезке в дереве отрезков, т. е.
См.также
- Метод двоичного подъема
- Решение RMQ с помощью разреженной таблицы
- Алгоритм Фарака-Колтона и Бендера
- Сведение задачи RMQ к задаче LCA