Интеграл Римана-Стилтьеса — различия между версиями
(Новая страница: «<wikitex> Интеграл Римана-Стилтьеса строится аналогично [[Определение_интеграла_Римана,_про...») |
|||
Строка 21: | Строка 21: | ||
}} | }} | ||
− | + | Свойства функций ограниченной вариации{{TODO|t=ЭТО, НАВЕРНОЕ, НАДО ПЕРЕНЕСТИ В ВАРИАЦИИ?}}: | |
− | |||
− | |||
− | |||
# $f, g \in V(a, b) \Rightarrow \alpha f + \beta g \in V(a, b) $ | # $f, g \in V(a, b) \Rightarrow \alpha f + \beta g \in V(a, b) $ | ||
# $f, g \in V(a, b) \Rightarrow f g \in V(a, b) $ | # $f, g \in V(a, b) \Rightarrow f g \in V(a, b) $ | ||
− | + | Теперь перенесем все это на $g \in V(a, b)$: | |
+ | |||
+ | $ g \in V(a, b)$, $g = g_1 - g_2$, $\int\limits_a^b f dg = (def) \int\limits_a^b f dg_1 - \int\limits_a^b f dg_2$, причем он не должен зависеть от выбора $g_1$ и $g_2$. | ||
− | $ \int\limits_a^b f d(\alpha g_1 + \beta g_2) = \alpha \int\limits_a^b f dg_1 + \beta \int\limits_a^b f dg_2 $ | + | Интеграл Римана-Стилтьеса обладает линейностью и аддитивностью, а также линейностью по весовой функции: $ \int\limits_a^b f d(\alpha g_1 + \beta g_2) = \alpha \int\limits_a^b f dg_1 + \beta \int\limits_a^b f dg_2 $. |
{{Теорема | {{Теорема | ||
Строка 37: | Строка 36: | ||
|statement= | |statement= | ||
Пусть $f$ непрерывна на $[a, b]$, $g \in V(a, b)$. Тогда интеграл Римана-Стилтьеса $ \int\limits_a^b f dg $ существует. | Пусть $f$ непрерывна на $[a, b]$, $g \in V(a, b)$. Тогда интеграл Римана-Стилтьеса $ \int\limits_a^b f dg $ существует. | ||
− | |proof | + | |proof= |
Так как $f$ непрерывна на отрезке, то она равномерно непрерывна, то есть $\forall \varepsilon > 0 \exists \delta > 0: |x' - x''| < \delta \Rightarrow |f(x') - f(x'')| < \varepsilon$. Если $\operatorname{rang} \tau < \delta, M_k - m_k \le \varepsilon$ | Так как $f$ непрерывна на отрезке, то она равномерно непрерывна, то есть $\forall \varepsilon > 0 \exists \delta > 0: |x' - x''| < \delta \Rightarrow |f(x') - f(x'')| < \varepsilon$. Если $\operatorname{rang} \tau < \delta, M_k - m_k \le \varepsilon$ | ||
+ | $ \sigma (f, g, \tau) \le \left| \sum\limits_{i=0}^{n-1} (M_k - m_k) \Delta g_k \right| \le \sum\limits_{k=0}^{n-1} \varepsilon | \Delta g_k | = \varepsilon \bigvee\limits_a^b (g, \tau) \xrightarrow[\varepsilon \to 0]{} 0$. | ||
+ | }} | ||
+ | |||
+ | Уточним аддитивность интеграла: | ||
+ | # $ \exists \int\limits_a^b f dg, \exists \int\limits_a^c f dg, \exists \int\limits_b^c f dg \Rightarrow \int\limits_a^c = \int\limits_a^b + \int\limits_b^c $ | ||
+ | # $ \exists \int\limits_a^d \Rightarrow \exists \int\limits_b^c$, где $ [b, c] \in [a, d]$. | ||
+ | # Для интеграла Римана из существования $\int\limits_a^b $ и $\int\limits_b^c$ следует существование $\int\limits_a^c$. Для интеграла Римана-Стилтьеса в общем случае это неверно. | ||
+ | |||
+ | Пример | ||
+ | {{TODO|t=понять и запилить пример}} | ||
+ | |||
+ | {{Теорема | ||
+ | |about= | ||
+ | формула интегрирования по частям | ||
+ | |statement= | ||
+ | Пусть существуют $\int\limits_a^b f dg, \int\limits_a^b g df$. Тогда $\int\limits_a^b f dg = fg \bigl|_a^b - \int\limits_a^b g df $. | ||
+ | |proof= | ||
+ | $\omega(f, g, \tau) = \sum\limits_{i=0}^{n-1} f(\xi_k) (g(x_{k + 1}) - g(x_k)) = \\ | ||
+ | \sum\limits_{i=0}^{n-1} f(\xi_k) g(x_{k+1}) - \sum\limits_{i=0}^{n-1} f(\xi_k) g(x_k) = \\ | ||
+ | \sum\limits_{j=1}^n f(\xi_{j-1}) g(x_j) - \sum\limits_{k=0}^{n-1} f(\xi_k) g(x_k) = \\ | ||
+ | f(\xi_{n-1}) g(x_n) - f(\xi_0) g(x_0) + \sum\limits_{j=1}^{n-1} g(x_j) (f(\xi_{j - 1}) - f(\xi_j)) = \\ | ||
+ | f(\xi_{n-1}) g(x_n) - f(\xi_0) g(x_0) - \sum\limits_{j=1}^{n-1} g(x_j) (f(\xi_j) - f(\xi_{j-1})) $ | ||
+ | Так как интегралы существуют, точки $\xi_j$ можно выбирать как угодно. Примем $\xi_0 = x_0 = a, \xi_{n-1} = x_n = b, \xi_j = x_j, \xi_{j-1} = x_{j-1}$. | ||
+ | Получим $f(x)g(x) \bigl |_a^b - \sigma(g, f, \tau')$. Устремляя $\tau$ к нулю, получим нужную формулу. Из доказательства видно, что нужно только требование существования хотя бы одного их интегралов. | ||
+ | }} | ||
+ | |||
+ | {{Утверждение | ||
+ | |statement= | ||
+ | Пусть $f$ непрерывна на $[a, b]$, $f'$ — непрерывна на $(a, b)$, тогда $f$ — функция ограниченной вариации. | ||
+ | |proof= | ||
+ | $|f(x_{k+1}) - f(x_k)| = |f'(\xi_k)| \Delta x_k \le M \Delta x_k$ | ||
+ | $ \bigvee\limits_a^b (f, \tau) \le M (b - a) \Rightarrow f \in \bigvee(a, b) $ | ||
+ | }} | ||
+ | |||
+ | {{Утверждение | ||
+ | |statement= | ||
+ | Пусть $g'$ непрерывна на $[a, b]$ и существует $\int\limits_a^b f(x) g'(x) dx$, тогда существует $\int\limits_a^b f dg$, и его значение совпадает с $\int\limits_a^b f(x) g'(x) dx$/ | ||
+ | |proof= | ||
+ | Из предыдущего утверждения, $g'$ — ограниченной вариации, следовательно, $\int\limits_a^b f dg$ существует. Распишем ее интеграл Стилтьеса: | ||
+ | $\sigma(f, g, \tau) = \sum\limits_{k=0}^{n-1} f(\xi_k) (g(x_{k+1}) - g(x_k)) = \sum\limits_{k=0}^{n-1} f(\xi_k) g'(\xi'_k) \Delta x_k $(по формуле Лагранжа) $ = \sum\limits_{k=0}^{n-1} f(\xi_k) g'(\xi_k) \Delta x_k + \sum\limits_{k=0}^{n-1} f(\xi_k) (g'(\xi'_k) - g'(\xi_k)) \Delta x_k $. | ||
+ | |||
+ | Первое слагаемое правой части в пределе дает $\int\limits_a^b f(x) g'(x) dx $. Рассмотрим вторую часть: | ||
+ | За счет равномерной непрерывности $g'$, если $\operatorname{rang} \tau < \delta $ и $\xi_k, xi'_k \in [x_k, x_{k+1}]$, следовательно, $|g'(\xi_k) - g'(\xi'_k)| < \varepsilon$. | ||
+ | $ \sum\limits_{k=0}^{n-1} f(\xi_k) (g'(\xi'_k) - g'(\xi_k)) \Delta x_k \le \sum\limits_{k=0}^{n-1} M \varepsilon \Delta x_k = M (b - a) \varepsilon \xrightarrow[\varepsilon \to 0]{} 0$. | ||
+ | }} | ||
+ | |||
+ | В качестве применения этой теоремы оценим коэффициенты Фурье $2\pi$-периодической функции $f \in \bigvee(0, 2\pi)$: | ||
+ | |||
+ | $a_n(f) = \frac{1}{\pi} \int\limits_{-\pi}^{\pi} f(x) \cos(nx) dx = \\ | ||
+ | \frac{1}{\pi n} \int\limits_{-\pi}^{\pi} f(x) d sin(nx) = \frac{1}{\pi n} \left( f(x) \sin(x) \bigl |^{\pi}_{-\pi} - \int\limits_{-\pi}^{\pi} sin(nx) df \right) $ | ||
+ | Первое слагаемое после подстановки обнуляется, второе слагаемое оценим сверху как $\bigvee\limits_{-\pi}^{\pi}(f)$. Итак, получили: $|a_n(f)| \le \frac{1}{\pi n} \bigvee\limits_{-\pi}^{\pi}$. Аналогичный результат можно получить для $b_n$. | ||
+ | |||
</wikitex> | </wikitex> |
Версия 20:14, 20 июня 2012
<wikitex> Интеграл Римана-Стилтьеса строится аналогично интегралу Римана:
Пусть дан отрезок $[a, b]$, на котором определены функции $f$ и весовая функция $g$, причем $g$ — не убывает. Пусть на нем есть разбиение $\tau : a=x_0 < \dots < x_n=b$ и точки $\xi_i \in [x_i; x_{i+1}]$. Составим интегральную сумму $\sigma(f, g, \tau) = \sum\limits_{k=0}^{n-1} f(\xi_k) \Delta g_k $, где $\Delta g_k = g(x_{k+1}) - g(x_k) $ (заметим, что т.к. $g$ не убывает, $\Delta g_k \ge 0$).
Определение: |
Интегралом Римана-Стилтьеса называется $\int\limits_a^b f dg = \lim\limits_{\operatorname{rang} \tau \to 0} \sigma (f, g, \tau) $, где $\operatorname{rang} \tau = \max(\Delta x_0, \dots \Delta x_{n-1})$. Класс функций, у которых существует интеграл Римана-Стилтьеса обозначанется как $\mathcal{R}(g)$. |
Далее аналогично интегралу Римана введем $\omega(f, g, \tau) = \sum\limits_{k=0}^{n-1} (M_k - m_k) \Delta g_k$, где $m_k = \inf\limits_{[x_k \dots x_{k+1}]} f, M_k = \sup\limits_{[x_k \dots x_{k+1}]} f$.
Теорема (Критерий существования интеграла Римана-Стилтьеса): |
$f \in \mathcal{R}(g) \Leftrightarrow \omega(f, g, \tau) \xrightarrow[\operatorname{rang} \tau \to 0]{} 0 $. |
Доказательство: |
Доказывается аналогично интегралу Римана. |
Свойства функций ограниченной вариации TODO: ЭТО, НАВЕРНОЕ, НАДО ПЕРЕНЕСТИ В ВАРИАЦИИ?:
- $f, g \in V(a, b) \Rightarrow \alpha f + \beta g \in V(a, b) $
- $f, g \in V(a, b) \Rightarrow f g \in V(a, b) $
Теперь перенесем все это на $g \in V(a, b)$:
$ g \in V(a, b)$, $g = g_1 - g_2$, $\int\limits_a^b f dg = (def) \int\limits_a^b f dg_1 - \int\limits_a^b f dg_2$, причем он не должен зависеть от выбора $g_1$ и $g_2$.
Интеграл Римана-Стилтьеса обладает линейностью и аддитивностью, а также линейностью по весовой функции: $ \int\limits_a^b f d(\alpha g_1 + \beta g_2) = \alpha \int\limits_a^b f dg_1 + \beta \int\limits_a^b f dg_2 $.
Теорема (о существовании интеграла Римана-Стилтьеса): |
Пусть $f$ непрерывна на $[a, b]$, $g \in V(a, b)$. Тогда интеграл Римана-Стилтьеса $ \int\limits_a^b f dg $ существует. |
Доказательство: |
Так как $f$ непрерывна на отрезке, то она равномерно непрерывна, то есть $\forall \varepsilon > 0 \exists \delta > 0: |
Уточним аддитивность интеграла:
- $ \exists \int\limits_a^b f dg, \exists \int\limits_a^c f dg, \exists \int\limits_b^c f dg \Rightarrow \int\limits_a^c = \int\limits_a^b + \int\limits_b^c $
- $ \exists \int\limits_a^d \Rightarrow \exists \int\limits_b^c$, где $ [b, c] \in [a, d]$.
- Для интеграла Римана из существования $\int\limits_a^b $ и $\int\limits_b^c$ следует существование $\int\limits_a^c$. Для интеграла Римана-Стилтьеса в общем случае это неверно.
Пример
TODO: понять и запилить пример
Теорема (формула интегрирования по частям): |
Пусть существуют $\int\limits_a^b f dg, \int\limits_a^b g df$. Тогда $\int\limits_a^b f dg = fg \bigl |
Доказательство: |
$\omega(f, g, \tau) = \sum\limits_{i=0}^{n-1} f(\xi_k) (g(x_{k + 1}) - g(x_k)) = \\ \sum\limits_{i=0}^{n-1} f(\xi_k) g(x_{k+1}) - \sum\limits_{i=0}^{n-1} f(\xi_k) g(x_k) = \\ \sum\limits_{j=1}^n f(\xi_{j-1}) g(x_j) - \sum\limits_{k=0}^{n-1} f(\xi_k) g(x_k) = \\ f(\xi_{n-1}) g(x_n) - f(\xi_0) g(x_0) + \sum\limits_{j=1}^{n-1} g(x_j) (f(\xi_{j - 1}) - f(\xi_j)) = \\ f(\xi_{n-1}) g(x_n) - f(\xi_0) g(x_0) - \sum\limits_{j=1}^{n-1} g(x_j) (f(\xi_j) - f(\xi_{j-1})) $ Так как интегралы существуют, точки $\xi_j$ можно выбирать как угодно. Примем $\xi_0 = x_0 = a, \xi_{n-1} = x_n = b, \xi_j = x_j, \xi_{j-1} = x_{j-1}$. Получим $f(x)g(x) \bigl |
Утверждение: |
Пусть $f$ непрерывна на $[a, b]$, $f'$ — непрерывна на $(a, b)$, тогда $f$ — функция ограниченной вариации. |
$ |
Утверждение: |
Пусть $g'$ непрерывна на $[a, b]$ и существует $\int\limits_a^b f(x) g'(x) dx$, тогда существует $\int\limits_a^b f dg$, и его значение совпадает с $\int\limits_a^b f(x) g'(x) dx$/ |
Из предыдущего утверждения, $g'$ — ограниченной вариации, следовательно, $\int\limits_a^b f dg$ существует. Распишем ее интеграл Стилтьеса: $\sigma(f, g, \tau) = \sum\limits_{k=0}^{n-1} f(\xi_k) (g(x_{k+1}) - g(x_k)) = \sum\limits_{k=0}^{n-1} f(\xi_k) g'(\xi'_k) \Delta x_k $(по формуле Лагранжа) $ = \sum\limits_{k=0}^{n-1} f(\xi_k) g'(\xi_k) \Delta x_k + \sum\limits_{k=0}^{n-1} f(\xi_k) (g'(\xi'_k) - g'(\xi_k)) \Delta x_k $. Первое слагаемое правой части в пределе дает $\int\limits_a^b f(x) g'(x) dx $. Рассмотрим вторую часть: За счет равномерной непрерывности $g'$, если $\operatorname{rang} \tau < \delta $ и $\xi_k, xi'_k \in [x_k, x_{k+1}]$, следовательно, $ |
В качестве применения этой теоремы оценим коэффициенты Фурье $2\pi$-периодической функции $f \in \bigvee(0, 2\pi)$:
$a_n(f) = \frac{1}{\pi} \int\limits_{-\pi}^{\pi} f(x) \cos(nx) dx = \\ \frac{1}{\pi n} \int\limits_{-\pi}^{\pi} f(x) d sin(nx) = \frac{1}{\pi n} \left( f(x) \sin(x) \bigl |^{\pi}_{-\pi} - \int\limits_{-\pi}^{\pi} sin(nx) df \right) $ Первое слагаемое после подстановки обнуляется, второе слагаемое оценим сверху как $\bigvee\limits_{-\pi}^{\pi}(f)$. Итак, получили: $|a_n(f)| \le \frac{1}{\pi n} \bigvee\limits_{-\pi}^{\pi}$. Аналогичный результат можно получить для $b_n$.
</wikitex>