Алгоритм Кнута-Морриса-Пратта — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Оценка по памяти)
(Оценка по памяти)
Строка 19: Строка 19:
  
 
==Оценка по памяти==
 
==Оценка по памяти==
Предложенная реализация имеет оценку по памяти <tex>O(P+T)</tex>. Оценки <tex>O(T)</tex> можно добиться за счет незапоминания значений <tex>\pi()</tex> для позиций в <tex>T</tex>, меньших <tex>p + 1</tex> (до начала цепочки <tex>T</tex>).
+
Предложенная реализация имеет оценку по памяти <tex>O(P+T)</tex>. Оценки <tex>O(T)</tex> можно добиться за счет незапоминания значений <tex>\pi()</tex> для позиций в <tex>T</tex>, меньших <tex>p + 1</tex> (т.е. до начала цепочки <tex>T</tex>).
  
 
==Источники==
 
==Источники==
 
[http://en.wikipedia.org/wiki/Knuth%E2%80%93Morris%E2%80%93Pratt_algorithm Knuth–Morris–Pratt algorithm]<br>
 
[http://en.wikipedia.org/wiki/Knuth%E2%80%93Morris%E2%80%93Pratt_algorithm Knuth–Morris–Pratt algorithm]<br>
 
Кормен, Т., Лейзерсон, Ч., Ривест, Р., Штайн — Алгоритмы: построение и анализ / пер. с англ. — изд. 2-е — М.: Издательский дом «Вильямс», 2009. — с.1036. — ISBN 978-5-8459-0857-5.
 
Кормен, Т., Лейзерсон, Ч., Ривест, Р., Штайн — Алгоритмы: построение и анализ / пер. с англ. — изд. 2-е — М.: Издательский дом «Вильямс», 2009. — с.1036. — ISBN 978-5-8459-0857-5.

Версия 12:59, 21 июня 2012

Алгоритм Кнута — Морриса — Пратта — алгоритм поиска подстроки в строке.

Описание алгоритма

Дана цепочка [math]T[/math] и образец [math]P[/math]. Требуется найти все позиции, начиная с которых [math]P[/math] входит в [math]T[/math].
Построим строку [math]S = P\#T[/math], где [math]\#[/math] — любой символ, не входящий в алфавит [math]P[/math] и [math]T[/math]. Посчитаем на ней префикс-функцию [math]\pi()[/math]. Благодаря разделительному символу [math]\#[/math], выполняется [math]\forall i: \pi(i) \le |P|[/math]. Заметим, что по определению префикс-функции при [math]i \gt |P|[/math] и [math]\pi(i) = |P|[/math] подстроки длины [math]P[/math], начинающиеся с позиций [math]0[/math] и [math]i - |P| + 1[/math], совпадают. Соберем все такие позиции [math]i - |P| + 1[/math] строки [math]S[/math], вычтем из каждой позиции [math]|P| + 1[/math], это и будет ответ.
Kmp pict.png

Псевдокод

Пусть [math]p = |P|[/math], [math]t = |T|[/math].

count = 0
for (i = 0 .. (t - 1))
   if ([math]\pi[/math](p + i + 1) == p)
      answer[count++] = i + 1 - p

Время работы

Префикс-функция от строки [math]S[/math] строится за [math]O(S) = O(P + T)[/math]. Проход цикла по строке [math]S[/math] содержит [math]O(T)[/math] итераций. Итого, время работы алгоритма оценивается как [math]O(P + T)[/math].

Оценка по памяти

Предложенная реализация имеет оценку по памяти [math]O(P+T)[/math]. Оценки [math]O(T)[/math] можно добиться за счет незапоминания значений [math]\pi()[/math] для позиций в [math]T[/math], меньших [math]p + 1[/math] (т.е. до начала цепочки [math]T[/math]).

Источники

Knuth–Morris–Pratt algorithm
Кормен, Т., Лейзерсон, Ч., Ривест, Р., Штайн — Алгоритмы: построение и анализ / пер. с англ. — изд. 2-е — М.: Издательский дом «Вильямс», 2009. — с.1036. — ISBN 978-5-8459-0857-5.