Сведение задачи RMQ к задаче LCA — различия между версиями
(→Алгоритм) |
(→Доказательство) |
||
Строка 17: | Строка 17: | ||
<tex>RMQ(i, j)</tex> = <tex>LCA(A[i], A[j])</tex>. | <tex>RMQ(i, j)</tex> = <tex>LCA(A[i], A[j])</tex>. | ||
|proof= | |proof= | ||
− | + | Положим <tex>w = LCA(A[i], A[j])</tex>. | |
− | + | ||
− | + | Заметим, что <tex>A[i]</tex> и <tex>A[j]</tex> не принадлежат одновременно либо правому, либо левому поддереву <tex>w</tex>, потому как тогда бы соответствующий сын находился на большей глубине, чем <tex>w</tex>, и также являлся предком как <tex>A[i]</tex> так и <tex>A[j]</tex>, что противоречит определению <tex>LCA</tex>. Из этого замечанию следует, что <tex>w</tex> лежит между <tex>A[i]</tex> и <tex>A[j]</tex> и, следовательно, принадлежит отрезку <tex>A[i..j]</tex>. | |
+ | |||
+ | |||
+ | По построению мы также знаем, что: | ||
+ | # Любая вершина дерева имеет свое значение меньшим либо равным значению её детей. | ||
+ | # Поддерево с корнем в <tex>w</tex> содержит в себе подмассив <tex>A[i..j]</tex>. | ||
+ | |||
+ | Суммируя, получаем, что <tex>w</tex> имеет минимальное значение на отрезке, покрывающем <tex>A[i..j]</tex>, и принадлежит отрезку <tex>A[i..j]</tex>, отсюда <tex>RMQ(i, j) = w</tex>. | ||
}} | }} | ||
+ | |||
== Построение дерева за линейное время == | == Построение дерева за линейное время == | ||
Пусть дан массив <tex>A[1..N]</tex>. Будем по очереди слева на право добавлять элементы в дерево. Чтобы добавить новое значение <tex>A[i]</tex>, начнем обход из вершины <tex>A[i-1]</tex> к корню, пока не найдем вершину <tex>x</tex>, для которой <tex>x < A[i]</tex>. Тогда правого сына <tex>x</tex> назначим левым сыном <tex>A[i]</tex>, а <tex>A[i]</tex> {{---}} правым сыном <tex>x</tex>. Рассмотрим правую ветку дерева, т.е. по которой проходит обход алгоритма. Заметим, что при добавлении нового узла в дерево элементы, по которым только что прошелся алгоритм отправляются налево, т.е. перестают принадлежать правой ветке. Таким образом процедура поиска родителя не сможет выполнится более <tex>n</tex> раз и итоговая асимптотика алгоритма <tex>O(n)</tex>. | Пусть дан массив <tex>A[1..N]</tex>. Будем по очереди слева на право добавлять элементы в дерево. Чтобы добавить новое значение <tex>A[i]</tex>, начнем обход из вершины <tex>A[i-1]</tex> к корню, пока не найдем вершину <tex>x</tex>, для которой <tex>x < A[i]</tex>. Тогда правого сына <tex>x</tex> назначим левым сыном <tex>A[i]</tex>, а <tex>A[i]</tex> {{---}} правым сыном <tex>x</tex>. Рассмотрим правую ветку дерева, т.е. по которой проходит обход алгоритма. Заметим, что при добавлении нового узла в дерево элементы, по которым только что прошелся алгоритм отправляются налево, т.е. перестают принадлежать правой ветке. Таким образом процедура поиска родителя не сможет выполнится более <tex>n</tex> раз и итоговая асимптотика алгоритма <tex>O(n)</tex>. |
Версия 14:43, 21 июня 2012
Содержание
Постановка задачи RMQ
Дан массив
. Поступают запросы вида , на каждый запрос требуется найти минимум в массиве , начиная с позиции и заканчивая позицией .Алгоритм
Декартово дерево (англ. сartesian tree) по неявному ключу на массиве
— это бинарное дерево, допускающее следующее рекурсивное построение:- Корнем дерева является элемент массива, имеющий минимальное значение , скажем . Если минимальных элементов несколько, можно взять любой.
- Левым поддеревом является декартово дерево на массиве .
- Правым поддеревом является декартово дерево на массиве .
Здесь и далее
будет также использоваться для обозначения соответствующей вершины дерева.Построим декартово дерево на массиве
. Тогда = .Доказательство
Теорема: |
= . |
Доказательство: |
Положим .Заметим, что и не принадлежат одновременно либо правому, либо левому поддереву , потому как тогда бы соответствующий сын находился на большей глубине, чем , и также являлся предком как так и , что противоречит определению . Из этого замечанию следует, что лежит между и и, следовательно, принадлежит отрезку .
|
Построение дерева за линейное время
Пусть дан массив
. Будем по очереди слева на право добавлять элементы в дерево. Чтобы добавить новое значение , начнем обход из вершины к корню, пока не найдем вершину , для которой . Тогда правого сына назначим левым сыном , а — правым сыном . Рассмотрим правую ветку дерева, т.е. по которой проходит обход алгоритма. Заметим, что при добавлении нового узла в дерево элементы, по которым только что прошелся алгоритм отправляются налево, т.е. перестают принадлежать правой ветке. Таким образом процедура поиска родителя не сможет выполнится более раз и итоговая асимптотика алгоритма .Сложность
Выше описан алгоритм построения дерева за
. Препроцессинг для — и ответ на запрос . В итоге получили {построение , запрос }.