QSumCi — различия между версиями
Строка 18: | Строка 18: | ||
<tex>\Pi_j = i \cup \Pi_j </tex> | <tex>\Pi_j = i \cup \Pi_j </tex> | ||
<tex>w_j = w_j + \frac{1}{s_j} </tex> | <tex>w_j = w_j + \frac{1}{s_j} </tex> | ||
+ | |||
+ | ==Литература== | ||
+ | * Peter Brucker. «Scheduling Algorithms» {{---}} «Springer», 2006 г. {{---}} 133 стр. {{---}} ISBN 978-3-540-69515-8 | ||
+ | [[Категория: Дискретная математика и алгоритмы]] | ||
+ | [[Категория: Теория расписаний]] |
Версия 18:06, 21 июня 2012
Постановка задачи
Есть несколько станков с разной скоростью выполнения работ и несколько работ с заданным временем выполнения.
Цель - составить такое расписание, чтобы суммарное время окончания всех работ было минимальным.
Алгоритм решения
Пусть
последовательность работ, выполняемых на станке с номером . Тогда вклад этих работ в целевую функцию будет равен . Отсюда видно, что сумма оптимальна, когда последовательность не убывает. Теперь введем неубывающую последовательность , которая состоит из маленьких элементов из множества . Если , то на -том станкеПсевдокод
for= 1 to do for = 1 to do Find the largest index of = ;
Литература
- Peter Brucker. «Scheduling Algorithms» — «Springer», 2006 г. — 133 стр. — ISBN 978-3-540-69515-8