Интеграл Дирихле — различия между версиями
Строка 12: | Строка 12: | ||
По свойствам интеграла, меняя местами значки интеграла и конечного суммирования, получим | По свойствам интеграла, меняя местами значки интеграла и конечного суммирования, получим | ||
<tex>\int\limits_{Q}f(t)\frac{1}{\pi}(\frac{1}{2}+\sum\limits_{k=1}^{n}(\cos{kt}\cos{kx}+\sin{kt}\sin{kx})dt)=</tex> | <tex>\int\limits_{Q}f(t)\frac{1}{\pi}(\frac{1}{2}+\sum\limits_{k=1}^{n}(\cos{kt}\cos{kx}+\sin{kt}\sin{kx})dt)=</tex> | ||
− | <tex>\int\limits_{Q}f(t)\frac{1}{\pi}(\frac{1}{2}+\sum\limits_{k=1}^{n}cos{k(x-t)})dt</tex>. | + | <tex>\int\limits_{Q}f(t)\frac{1}{\pi}(\frac{1}{2}+\sum\limits_{k=1}^{n}\cos{k(x-t)})dt</tex>. |
{{Определение | {{Определение | ||
|definition= | |definition= | ||
Строка 40: | Строка 40: | ||
Домножим это выражение на <tex>\sin{\frac{t}{2}}</tex>: | Домножим это выражение на <tex>\sin{\frac{t}{2}}</tex>: | ||
− | <tex>\sin{\frac{t}{2}}D_n(t) = \frac{1}{\pi}(\frac{1}{2}\sin{\frac{t}{2}}+\sum\limits_{k=1}^{n} | + | <tex>\sin{\frac{t}{2}}D_n(t) = \frac{1}{\pi}(\frac{1}{2}\sin{\frac{t}{2}}+\sum\limits_{k=1}^{n} \cos{kt} \sin{\frac{t}{2}})=</tex> |
− | cos{kt} \sin{\frac{t}{2}})=</tex> | ||
<tex>\frac{1}{\pi}(\frac{1}{2}\sin{\frac{t}{2}}+\frac{1}{2}\sum\limits_{k=1}^{n}(\sin{(k+\frac{1}{2})t}-\sin{(k-\frac{1}{2})t}))=</tex> | <tex>\frac{1}{\pi}(\frac{1}{2}\sin{\frac{t}{2}}+\frac{1}{2}\sum\limits_{k=1}^{n}(\sin{(k+\frac{1}{2})t}-\sin{(k-\frac{1}{2})t}))=</tex> | ||
− | <tex>\frac{1}{\pi}(\frac{1}{2}sin{\frac{t}{2}}+\frac{1}{2}(\sin{(n+\frac{1}{2})t}-\sin{\frac{t}{2}}))=</tex> <tex>\frac{1}{2\pi}\sin{(n+\frac{1}{2})t}</tex> | + | <tex>\frac{1}{\pi}(\frac{1}{2}\sin{\frac{t}{2}}+\frac{1}{2}(\sin{(n+\frac{1}{2})t}-\sin{\frac{t}{2}}))=</tex> <tex>\frac{1}{2\pi}\sin{(n+\frac{1}{2})t}</tex> |
Разделив обе части на <tex>\sin{\frac{t}{2}}</tex>, получим требуемую формулу. | Разделив обе части на <tex>\sin{\frac{t}{2}}</tex>, получим требуемую формулу. | ||
}} | }} | ||
− | Используя эту формулу, можно записать: <tex dpi="140">S_n(f,x)=\int\limits_{-\pi}^{\pi}f(x+t)\frac{1}{2\pi}\frac{\sin{( | + | Используя эту формулу, можно записать: <tex dpi="140">S_n(f,x)=\int\limits_{-\pi}^{\pi}f(x+t)\frac{1}{2\pi}\frac{\sin{(n+\frac{1}{2})t}}{\sin{\frac{t}{2}}}dt=</tex> (пользуясь четностью ядра и линейностью интеграла) |
<tex>=\int\limits_{-\pi}^{0}+\int\limits_{0}^{\pi}=\int\limits_{0}^{\pi}(f(x+t)+f(x-t))D_n(t)dt</tex> | <tex>=\int\limits_{-\pi}^{0}+\int\limits_{0}^{\pi}=\int\limits_{0}^{\pi}(f(x+t)+f(x-t))D_n(t)dt</tex> |
Версия 00:26, 23 июня 2012
Эта статья находится в разработке!
Для удобства вводим обозначения:
,где , — коэффициенты Фурье, — частичные суммы ряда Фурье, — ряд Фурье.Следуя Дирихле, запишем частичную сумму ряда Фурье посредством интеграла:
По свойствам интеграла, меняя местами значки интеграла и конечного суммирования, получим
.Определение: |
Тригонометрический полином вида | называется ядром Дирихле.
Подставляя эту функцию в только что полученную формулу, приходим к следующему выражению:
Определение: |
— интеграл Дирихле. |
Из формулы для ядра видно, что ядро — четная функция, более того, если ядро заинтегрировать по всему участку , то такой интеграл равен .
Воспользуемся свойством, что если — -периодична, то . Проделав замену переменных в интеграле Дирихле, приходим к формуле:
Определение: |
. В такой форме записи частичная сумма называется интегралом свертки c ядром . |
Чтобы применять этот интеграл, найдем замкнутое выражение для ядра.
Утверждение: |
По определению ядра: .Домножим это выражение на :
Разделив обе части на , получим требуемую формулу. |
Используя эту формулу, можно записать:
(пользуясь четностью ядра и линейностью интеграла)
(это проверяется непосредственно). Пусть , тогда .
Приходим к формуле:
— основная формула для изучения сходимости ряда Фурье в индивидуальной точке .