Opi1sumu — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Описание алгоритма)
Строка 38: Строка 38:
 
Введем понятие ''фронта'' расписания. ''Фронтом'' назовем вектор размеров тайм-слотов. Заметим, что от того, в каком порядке происходят перебрасывания из переполнившихся тайм-слотов, итоговый фронт не зависит. Поэтому, если мы сначала положим все работы в тайм-слоты, игнорируя ограничение на их размер, а потом в каком-то порядке перекинем, итоговый фронт окажется тем же. В случае, если при построении тайм-слотов игнорировалось ограничение на их размер, ни одну единицу работы нельзя назначить позже.
 
Введем понятие ''фронта'' расписания. ''Фронтом'' назовем вектор размеров тайм-слотов. Заметим, что от того, в каком порядке происходят перебрасывания из переполнившихся тайм-слотов, итоговый фронт не зависит. Поэтому, если мы сначала положим все работы в тайм-слоты, игнорируя ограничение на их размер, а потом в каком-то порядке перекинем, итоговый фронт окажется тем же. В случае, если при построении тайм-слотов игнорировалось ограничение на их размер, ни одну единицу работы нельзя назначить позже.
  
Будем также рассматривать тайм-слоты без номеров работ: в каждом тайм-слоте просто лежит сколько-то единиц работ. От этого итоговый фронт также не изменится. Будем рассматривать тайм-слоты по убыванию времени с <tex>d_1</tex> до <tex>0</tex>. В каждый момент времени будем хранить, сколько работ ''необходимо'' перекинуть на более ранние тайм-слоты. Изначально это число равно нулю.
+
Будем также рассматривать тайм-слоты без номеров работ: в каждом тайм-слоте просто лежит сколько-то единиц работ. От этого итоговый фронт также не изменится. Заметим, что если нельзя составить корректную в плане наполненности конфигурацию тайм-слотов при данном ослаблении, то нельзя это сделать и в случае существования номера у каждой единицы работы. Будем рассматривать тайм-слоты по убыванию времени с <tex>d_1</tex> до <tex>0</tex>. В каждый момент времени будем хранить, сколько работ ''необходимо'' перекинуть на более ранние тайм-слоты. Изначально это число равно нулю.
  
Рассмотрим очередной тайм-слот. Пусть в нем занято <tex>h</tex> ячеек из <tex>m</tex>. Пусть <tex>h > m</tex>. Тогда текущий момент есть еще и <tex>a</tex> нераспределяемых позже единиц работы. Если <tex>h + a <= m</tex>, то можно назначить все нераспределяемые позже работы на это время, и сбросить их счетчик. Иначе, так как более <tex>m</tex> единиц работы сейчас выполнить нельзя, а также, ничего нельзя назначить позже, то оказывается, что невыполняемых сейчас или позже работ стало <tex>h + a - m</tex>.
+
Рассмотрим очередной тайм-слот. Пусть в нем занято <tex>h</tex> ячеек из <tex>m</tex>, а также, есть еще <tex>a</tex> нераспределяемых позже единиц работы. Здесь возможныд два случая:
 +
* <tex>h + a > m</tex>. В этом случае, так как более <tex>m</tex> единиц работы сейчас выполнить нельзя, а также, ничего нельзя назначить позже, то оказывается, что невыполняемых сейчас или позже работ стало <tex>h + a - m</tex>.
 +
* Если <tex>h + a <= m</tex>. Здесь можно назначить все нераспределяемые позже работы на это время, и сбросить их счетчик.
  
Если мы вышли из нулевого времени, а невыполненные единицы работы остались, то, так как распределить их никак невозможно, то не существует расписания, в котором бы выполнились все работы.
+
Так как и этот, и изучаемый алгоритм получают в итоге одинаковый фронт, а в этом мы вышли из нулевого времени, а невыполненные единицы работы остались, то, так как распределить их никак невозможно, то не существует расписания, в котором бы выполнились все работы.
 
}}
 
}}
  

Версия 19:11, 23 июня 2012

Описание задачи

Дано [math]m[/math] одинаковых станков, которые работают параллельно и [math]n[/math] работ, котороые необходимо выполнить в произвольном порядке на всех станках. Время выполнения каждой работы на любом станке одинаково и равно одному. Для каждой работы известно время, до которого её необходимо выполнить. Необходимо успеть выполнить как можно больше работ.

Описание алгоритма

Отсортируем работы в порядке невозрастания дедлайнов.

Утверждение:
Если в оптимальном расписании можно сделать [math]k[/math] работ, то можно сделать первые [math]k[/math] работ.
[math]\triangleright[/math]

Пусть в оптимальном расписании были сделаны работы [math]i_1, i_2, \ldots, i_k[/math]. Докажем, что существует оптимальное расписание, в котором сделаны работы [math]1, 2, \ldots, k[/math]. Пусть работы [math]i_1, i_2, \ldots, i_k[/math] тоже отсортированы в порядке неубывания дедлайна. Тогда [math]d_{i1} \le d_1, d_{i2}\le d_2, \ldots, d_{ik}\le d_{k}[/math].

Тогда, если заменить во всём расписании работу [math]i_j[/math] на работу [math]j[/math], то она, тем более, будет выполнена.
[math]\triangleleft[/math]


Определение:
Обозначим за тайм-слот t множество из не более, чем [math]m[/math] различных чисел — номера работ, которые мы хотим выполнить в момент времени [math]t[/math].


Введем тайм-слот для каждого момента времени от [math]0[/math] до [math]d_n[/math]. Каждую работу будем пытаться сделать как можно позже. Будем рассматривать работы в порядке невозрастания дедлайнов. [math]i[/math]-ю работу попытаемся добавить в тайм-слоты с номерами от [math]d_i - m + 1[/math] по [math]d_i[/math]. После добавления некоторые тайм-слоты могли переполниться (тайм-слот переполнился, если в нём уже находилось [math]m[/math] работ, и в него добавили [math]m+1[/math]-ю). Для переполнившегося тайм-слота найдём найдем самый правый левее него тайм-слот, который ещё не переполнился и перекинем работу, которой там еще нет, в него. Так как в нем меньше элементов, то, по принципу Дирихле, это можно сделать.

Утверждение:
Следуя этому алгоритму, расписания не существует тогда и только тогда, когда переполнился нулевой тайм-слот.
[math]\triangleright[/math]

[math]\Rightarrow[/math] Расписания не существует, а значит, никакой алгоритм его не найдет.

[math]\Leftarrow[/math] Введем понятие фронта расписания. Фронтом назовем вектор размеров тайм-слотов. Заметим, что от того, в каком порядке происходят перебрасывания из переполнившихся тайм-слотов, итоговый фронт не зависит. Поэтому, если мы сначала положим все работы в тайм-слоты, игнорируя ограничение на их размер, а потом в каком-то порядке перекинем, итоговый фронт окажется тем же. В случае, если при построении тайм-слотов игнорировалось ограничение на их размер, ни одну единицу работы нельзя назначить позже.

Будем также рассматривать тайм-слоты без номеров работ: в каждом тайм-слоте просто лежит сколько-то единиц работ. От этого итоговый фронт также не изменится. Заметим, что если нельзя составить корректную в плане наполненности конфигурацию тайм-слотов при данном ослаблении, то нельзя это сделать и в случае существования номера у каждой единицы работы. Будем рассматривать тайм-слоты по убыванию времени с [math]d_1[/math] до [math]0[/math]. В каждый момент времени будем хранить, сколько работ необходимо перекинуть на более ранние тайм-слоты. Изначально это число равно нулю.

Рассмотрим очередной тайм-слот. Пусть в нем занято [math]h[/math] ячеек из [math]m[/math], а также, есть еще [math]a[/math] нераспределяемых позже единиц работы. Здесь возможныд два случая:

  • [math]h + a \gt m[/math]. В этом случае, так как более [math]m[/math] единиц работы сейчас выполнить нельзя, а также, ничего нельзя назначить позже, то оказывается, что невыполняемых сейчас или позже работ стало [math]h + a - m[/math].
  • Если [math]h + a \lt = m[/math]. Здесь можно назначить все нераспределяемые позже работы на это время, и сбросить их счетчик.
Так как и этот, и изучаемый алгоритм получают в итоге одинаковый фронт, а в этом мы вышли из нулевого времени, а невыполненные единицы работы остались, то, так как распределить их никак невозможно, то не существует расписания, в котором бы выполнились все работы.
[math]\triangleleft[/math]

Опираясь на это утверждение, можно найти максимальное количество работ, которое можно выполнить. Обозначим его за [math]k[/math].

Сведем задачу построения распинания по построенным тайм-слотам к задаче о покрытии двудольного графа минимальным количеством паросочетаний.

Построим двудольный граф. В левой доле вершинам будут соответствовать работы, в правой — времена. Соответственно, в левой доле будет [math]n[/math] вершин, в правой — [math]d_{max}[/math]. Ребро между работой [math]i[/math] и временем [math]t[/math] будет, если работа [math]i[/math] есть в тайм-слоте [math]t[/math].

Рассмотрим какое-то паросочетание [math]M[/math] в этом графе. Оно соответствует корректному расписанию работ на одной машине: ни одна работа не выполняется два раза, и ни в один момент времени не выполняется более одной работы.

Тогда, если мы сможем построить множество мощности [math]m[/math] такое, что каждое ребро находится хотя бы в одном из паросочетаний, то оно будет соответствовать тому, что каждая работа обработана на каждом станке, а значит, составлено корректное расписание для этих [math]k[/math] работ.

Достроим граф до регулярного степени [math]m[/math]. Достраивать будем следующим образом. Каждая вершина в левой доле имеет степень [math]m[/math], так как каждая работа представлена в [math]m[/math] тайм-слотах. В правой доле степень каждой вершины не больше [math]m[/math], так как в тайм-слоте не может быть больше, чем [math]m[/math] работ. Значит, в левой доле не больше вершин, чем в правой. Добавим в левую долю фиктивных вершин, чтобы количества вершин в левой и правой долях сравнялись. После чего просто будем добавлять ребра между вершинами, степень которых еще меньше [math]m[/math]. Для покрытия этого графа паросочетаниями воспользуемся тем фактом, что регулярный двудольный граф степени [math]d[/math] можно покрыть [math]d[/math] паросочетаниями.

При помощи построения паросочетаний было построено расписание для тех [math]k[/math] работ, которые можно успеть сделать. Так как остальные работы уже нельзя успеть, расписание для них можно составить произвольное. Например, выполнять их по очереди после выполнения первых [math]k[/math] работ.

Оценка сложности алгоритма

Рассмотрим добавление очередной работы в тайм-слоты. За [math]O(t)[/math] найдём переполнившийся тайм-слот и за [math]O(m)[/math] перекинем из него элемент. Так как [math]t=O(nm)[/math], итоговая сложность этой части — [math]O(n^2m)[/math].

Достроение графа до регулярного делается за [math]O(E)[/math], где [math]E[/math] — количество ребер в нем. Количество ребер в регулярном двудольном графе [math]E = Vd[/math], где [math]V[/math] — количество вершин в одной из долей, а [math]d[/math] — степень. Количество вершин в правой доле — [math]O(t) = O(nm)[/math]. Значит, граф будет построен за [math]O(nm^2)[/math], так как степень каждой вершины — [math]m[/math].

Сложность последней фазы зависит от того, каким алгоритмом граф разбивается на паросочетания. Использовав, например, алгоритм Куна, можно добиться сложности [math]O(m \cdot M) = O(m \cdot n^3m^3)[/math]. Итоговая сложность алгоритма — [math]O(n^3m^4)[/math].