Транзитивный остов — различия между версиями
(→Алгоритм для антисимметричных отношений) |
|||
Строка 9: | Строка 9: | ||
Введём несколько обозначений: | Введём несколько обозначений: | ||
− | * <tex> u G v </tex> — в графе <tex> G </tex> есть ребро из вершины <tex> u </tex> в <tex> v </tex>; | + | * <tex> u \underset{G}{\to} v </tex> — в графе <tex> G </tex> есть ребро из вершины <tex> u </tex> в <tex> v </tex>; |
− | * <tex> u G | + | * <tex> u \underset{G}{\leadsto} v </tex> — в графе <tex> G </tex> есть путь (возможно, рёберно пустой) из вершины <tex> u </tex> в <tex> v </tex>; |
− | * <tex> u G | + | * <tex> u \underset{G}{\overset{+}{\leadsto}} v </tex> — в графе <tex> G </tex> есть рёберно непустой путь из вершины <tex> u </tex> в <tex> v </tex>. |
Также введём определение транзитивного замыкания в терминах теории графов: | Также введём определение транзитивного замыкания в терминах теории графов: | ||
{{Определение | {{Определение | ||
|definition= | |definition= | ||
− | '''Транзитивным замыканием''' графа <tex> G = \left < V, E \right > </tex> называется граф <tex> G^* = \left < V, E^* \right > </tex>, где <tex> E^* = \left \{ (i, j) \in V \times V | i G | + | '''Транзитивным замыканием''' графа <tex> G = \left < V, E \right > </tex> называется граф <tex> G^* = \left < V, E^* \right > </tex>, где <tex> E^* = \left \{ (i, j) \in V \times V | i \underset{G}{\leadsto} j \right \} </tex>. |
}} | }} | ||
− | Так как отношение антисимметрично, то граф ацикличен, то есть в нём выполняется следующее: <tex> \forall i, j \in V: i G | + | Так как отношение антисимметрично, то граф ацикличен, то есть в нём выполняется следующее: <tex> \forall i, j \in V: i \underset{G}{\overset{+}{\leadsto}} j \Longrightarrow i \neq j </tex>. |
Докажем теорему, из которой следует алгоритм. | Докажем теорему, из которой следует алгоритм. | ||
Строка 25: | Строка 25: | ||
{{Теорема | {{Теорема | ||
|statement= | |statement= | ||
− | Пусть <tex> G^- = \left < V, E^- \right > </tex>. Тогда <tex> E^- = \left \{ k G m \ | \ \forall l: [ k G | + | Пусть <tex> G^- = \left < V, E^- \right > </tex>. Тогда <tex> E^- = \left \{ k \underset{G}{\to} m \ | \ \forall l: [ k \underset{G}{\leadsto} l \wedge l \underset{G}{\to} m \Longrightarrow k = l ] \right \} </tex> |
|proof= | |proof= | ||
− | Докажем, что <tex> E^- \subseteq \left \{ k G m \ | \ \forall l: [ k G | + | Докажем, что <tex> E^- \subseteq \left \{ k \underset{G}{\to} m \ | \ \forall l: [ k \underset{G}{\leadsto} l \wedge l \underset{G}{\to} m \Longrightarrow k = l ] \right \}</tex>: |
− | Пусть <tex> G^- </tex> уже построен. Пусть <tex> k G^- m </tex>. Тогда <tex> k \neq m </tex> (так как иначе удаление ребра <tex> (k, m) </tex> из <tex> E^- </tex> приведёт к образованию меньшего графа с тем же транзитивным замыканием, что нарушает условие минимальности транзитивного остова). Поэтому по определению транзитивного остова <tex> k G | + | Пусть <tex> G^- </tex> уже построен. Пусть <tex> k \underset{G^-}{\to} m </tex>. Тогда <tex> k \neq m </tex> (так как иначе удаление ребра <tex> (k, m) </tex> из <tex> E^- </tex> приведёт к образованию меньшего графа с тем же транзитивным замыканием, что нарушает условие минимальности транзитивного остова). Поэтому по определению транзитивного остова <tex> k \underset{G}{\overset{+}{\leadsto}} m </tex>. |
− | Пусть <tex> l </tex> — вершина, для которой выполняется <tex> k G | + | Пусть <tex> l </tex> — вершина, для которой выполняется <tex> k \underset{G}{\leadsto} l \wedge l \underset{G}{\to} m </tex>. Докажем, что <tex> k = l </tex>, от противного. Пусть <tex> k \neq l </tex>. <tex> G </tex> ацикличен, поэтому <tex> l \neq m </tex>. Поскольку <tex> G^* = (G^-)^* </tex>, верно <tex> k \underset{G^-}{\overset{+}{\leadsto}} l \wedge l \underset{G^-}{\overset{+}{\leadsto}} m </tex>. Поскольку <tex> G^- </tex> ацикличен, путь из <tex> k </tex> в <tex> l </tex> не может содержать ребра <tex> (k, m) </tex>, аналогично путь из <tex> l </tex> в <tex> m </tex> не может содержать <tex> (k, m) </tex>. Поэтому в <tex> G^- </tex> существует путь из <tex> k </tex> в <tex> m </tex>, не содержащий в себе ребро <tex> (k, m) </tex>, значит, удаление <tex> (k, m) </tex> из <tex> E^- </tex> не изменит транзитивное замыкание, что противоречит условию минимальности <tex> E^- </tex>. Поэтому <tex> \forall l: [ k \underset{G}{\leadsto} l \wedge l \underset{G}{\to} m \Longrightarrow k = l ] </tex>. Поскольку <tex> k \underset{G}{\overset{+}{\leadsto}} m </tex>, существует такая вершина <tex> l </tex>, что <tex> k \underset{G}{\leadsto} l \wedge l \underset{G}{\to} m </tex>, что приводит к выводу, что <tex> k \underset{G}{\to} m </tex>. |
− | Докажем, что <tex> \left \{ k G m \ | \ \forall l: [ k G | + | Докажем, что <tex> \left \{ k \underset{G}{\to} m \ | \ \forall l: [ k \underset{G}{\leadsto} l \wedge l \underset{G}{\to} m \Longrightarrow k = l ] \right \} \subseteq E^- </tex>: |
− | Предположим, что <tex> k G m </tex> и <tex> \forall l: [ k G | + | Предположим, что <tex> k \underset{G}{\to} m </tex> и <tex> \forall l: [ k \underset{G}{\leadsto} l \wedge l \underset{G}{\to} m \Longrightarrow k = l ] </tex>. Докажем, что <tex> k G^- m </tex>, от противного. Предположим, что <tex> (k, m) \notin E^- </tex>. Поскольку <tex> G </tex> ацикличен, <tex> k \neq m </tex> и поэтому <tex> k (\underset{G^-}{\overset{+}{\leadsto}} m </tex>. Поскольку <tex> (k, m) \notin E^- </tex>, существует вершина <tex> l </tex> такая, что <tex> k \underset{G^-}{\leadsto} l \wedge l \underset{G^-}{\leadsto} m </tex> и <tex> k \neq l \neq m </tex>, поэтому <tex> k \underset{G}{\overset{+}{\leadsto}} l \wedge l \underset{G}{\overset{+}{\leadsto}} m </tex>. Поскольку <tex> G </tex> ацикличен, существует вершина <tex> l' \neq k </tex>, для которой выполняется <tex> k \underset{G}{\overset{+}{\leadsto}} l' \wedge l' \underset{G}{\to} m </tex>, что противоречит нашему предположению. |
− | Так как множества <tex> E^- </tex> и <tex> \left \{ k G m \ | \ \forall l: [ k G | + | Так как множества <tex> E^- </tex> и <tex> \left \{ k \underset{G}{\to} m \ | \ \forall l: [ k \underset{G}{\leadsto} l \wedge l \underset{G}{\to} m \Longrightarrow k = l ] \right \} </tex> включены друг в друга, они совпадают, что и требовалось доказать. |
}} | }} | ||
Версия 23:27, 24 июня 2012
Определение: |
Транзитивным остовом (transitive reduction) отношения на множестве называется минимальное отношение на такое, что транзитивное замыкание равно транзитивному замыканию . |
Алгоритм для антисимметричных отношений
Для удобства представим отношение в виде графа:
. Его транзитивным остовом будет граф .Введём несколько обозначений:
- — в графе есть ребро из вершины в ;
- — в графе есть путь (возможно, рёберно пустой) из вершины в ;
- — в графе есть рёберно непустой путь из вершины в .
Также введём определение транзитивного замыкания в терминах теории графов:
Определение: |
Транзитивным замыканием графа | называется граф , где .
Так как отношение антисимметрично, то граф ацикличен, то есть в нём выполняется следующее: .
Докажем теорему, из которой следует алгоритм.
Теорема: |
Пусть . Тогда |
Доказательство: |
Докажем, что :Пусть уже построен. Пусть . Тогда (так как иначе удаление ребра из приведёт к образованию меньшего графа с тем же транзитивным замыканием, что нарушает условие минимальности транзитивного остова). Поэтому по определению транзитивного остова .Пусть — вершина, для которой выполняется . Докажем, что , от противного. Пусть . ацикличен, поэтому . Поскольку , верно . Поскольку ацикличен, путь из в не может содержать ребра , аналогично путь из в не может содержать . Поэтому в существует путь из в , не содержащий в себе ребро , значит, удаление из не изменит транзитивное замыкание, что противоречит условию минимальности . Поэтому . Поскольку , существует такая вершина , что , что приводит к выводу, что .Докажем, что :Предположим, что Так как множества и . Докажем, что , от противного. Предположим, что . Поскольку ацикличен, и поэтому . Поскольку , существует вершина такая, что и , поэтому . Поскольку ацикличен, существует вершина , для которой выполняется , что противоречит нашему предположению. и включены друг в друга, они совпадают, что и требовалось доказать. |
Псевдокод
= foreach in foreach in foreach in if and and .delete(pair( , ))