Расстояние Хэмминга — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Привет с матмеха :))
Строка 6: Строка 6:
  
 
==Пример==  
 
==Пример==  
*<math>d(10{\color{Blue}1}1{\color{Blue}1}01, 10{\color{Red}0}1{\color{Red}0}01)=2</math>
+
*d(10<font color="blue">1</font>1<font color="blue">1</font>01, 10<font color="red">0</font>1<font color="red">0</font>01)=2
*<math>d(15{\color{Blue}38}1{\color{Blue}24}, 15{\color{Red}23}1{\color{Red}56})=4</math>
+
*d(15<font color="blue">38</font>1<font color="blue">24</font>, 15<font color="red">23</font>1<font color="red">56</font>)=4
*<math>d(h{\color{Blue}i}ll, h{\color{Red}o}ll)=1</math>
+
*d(h<font color="blue">i</font>ll, h<font color="red">o</font>ll)=1
  
 
==Свойства==
 
==Свойства==

Версия 19:21, 25 июня 2012

Определение:
Расстояние Хэмминга (Hamming distance) — число позиций, в которых различаются соответствующие символы двух строк одинаковой длины.

В более общем случае расстояние Хэмминга применяется для строк одинаковой длины любых k-ичных алфавитов и служит метрикой различия (функцией, определяющей расстояние в метрическом пространстве) объектов одинаковой размерности.

3-битный бинарный куб для нахождения расстояния Хэмминга

Пример

  • d(1011101, 1001001)=2
  • d(1538124, 1523156)=4
  • d(hill, holl)=1

Свойства

Расстояние Хэмминга обладает свойствами метрики, так как удовлетворяет ее определению.

  1. [math]~d(x, y) = 0 \iff x = y[/math] (Если расстояние от [math]x[/math] до [math]y[/math] равно нулю, то [math]x[/math] и [math]y[/math] совпадают ([math]x = y[/math]))
  2. [math]~d(x,y)=d(y,x)[/math] (Объект [math]x[/math] удален от объекта [math]y[/math] так же, как объект [math]y[/math] удален от объекта [math]x[/math])
  3. [math]~d(x,y) \le d(x,z) + d(z,y)[/math] (Расстояние от [math]x[/math] до [math]y[/math] всегда меньше или равно расстоянию от [math]x[/math] до [math]y[/math] через точку [math]z[/math]. Это свойство обычно называют неравенством треугольника за его естественную геометрическую аналогию: сумма двух сторон треугольника всегда больше третьей стороны.)

Доказательство неравенства треугольника

Утверждение:
[math]~d(x,y) \le d(x,z) + d(z,y)[/math]
[math]\triangleright[/math]
Пусть слова [math]x[/math] и [math]y[/math] отличаются в некоторых позициях. Тогда какое бы слово [math]z[/math] мы ни взяли, оно будет отличаться в каждой из этих позиций по крайне мере от одного из слов [math]x[/math] и [math]y[/math]. Следовательно, суммируя в правой части [math]d(x, z)[/math] и [math]d(z, y)[/math], мы обязательно учтем все позиции, в которых различались слова [math]x[/math] и [math]y[/math]. Т.е. получается, что [math]~d(x,y) \le d(x,z) + d(z,y)[/math].
[math]\triangleleft[/math]

См. также

Ссылки