Определение поля и подполя, изоморфизмы полей — различия между версиями
Строка 53: | Строка 53: | ||
<tex>\mathbb{Q} \subset \mathbb{Q}(x)</tex> - подполе <tex>\Rightarrow \mathbb{Q}(x)</tex> - не простое поле. | <tex>\mathbb{Q} \subset \mathbb{Q}(x)</tex> - подполе <tex>\Rightarrow \mathbb{Q}(x)</tex> - не простое поле. | ||
− | + | {{Определение | |
− | + | |definition= | |
− | + | Два поля называются одинаковыми, если существует биекция из одного поля в другое, сохраняющая операции сложения и умножения. <tex>K \cong F \Leftrightarrow \exists \varphi \colon K \to F; \varphi (a + b) = \varphi (a) + \varphi (b); \varphi (a b) = \varphi (a) \cdot \varphi (b) </tex> | |
− | + | }} | |
+ | {{Утверждение | ||
+ | |statement=<br /> | ||
# <tex>char\; F = 0 \Rightarrow F \cong \mathbb{Q}</tex><br />F - простое | # <tex>char\; F = 0 \Rightarrow F \cong \mathbb{Q}</tex><br />F - простое | ||
# <tex>char\; F \ne 0 \Rightarrow F \cong \mathbb{Z}_P</tex><br />F - простое | # <tex>char\; F \ne 0 \Rightarrow F \cong \mathbb{Z}_P</tex><br />F - простое | ||
− | + | |proof=<br /> | |
− | |||
# <tex> char \; F = 0 \Rightarrow </tex> суммы все различны; <tex>n \cdot 1 \ne 0, n \ne 0</tex><br /><tex>\frac{n}{m}\cdot1=\frac{n\cdot1}{m\cdot1}</tex><br /><tex>\frac{kn \cdot 1}{km \cdot 1} = \frac{(k \cdot 1) \cdot (n \cdot 1)}{(k \cdot 1) \cdot (m \cdot 1)} = \frac{n \cdot 1}{m \cdot 1}</tex><br /><tex>q \cdot 1 \ne 0, q \ne 0 \Rightarrow </tex>построенное поле <tex>\cong \mathbb{Q}</tex> | # <tex> char \; F = 0 \Rightarrow </tex> суммы все различны; <tex>n \cdot 1 \ne 0, n \ne 0</tex><br /><tex>\frac{n}{m}\cdot1=\frac{n\cdot1}{m\cdot1}</tex><br /><tex>\frac{kn \cdot 1}{km \cdot 1} = \frac{(k \cdot 1) \cdot (n \cdot 1)}{(k \cdot 1) \cdot (m \cdot 1)} = \frac{n \cdot 1}{m \cdot 1}</tex><br /><tex>q \cdot 1 \ne 0, q \ne 0 \Rightarrow </tex>построенное поле <tex>\cong \mathbb{Q}</tex> | ||
# <tex> char \; F = p \qquad n \cdot 1 = m \cdot 1 \Leftrightarrow n \equiv m (mod \;p) </tex>. Замкнуто относительно сложения и умножения <tex> \Rightarrow </tex> подполе <tex> \cong \mathbb{Z}_p </tex><br /><tex> K \subset F </tex>, F - вектор-пространство надо полем K. (F - вектора, K - скалярные величины). <br /> <tex> V_1 + V_2 \in F; K \cdot V_1 \in F \Rightarrow </tex> получаем векторное пространство. <br /><tex>[F:K]</tex> - размерность поля F над полем K. | # <tex> char \; F = p \qquad n \cdot 1 = m \cdot 1 \Leftrightarrow n \equiv m (mod \;p) </tex>. Замкнуто относительно сложения и умножения <tex> \Rightarrow </tex> подполе <tex> \cong \mathbb{Z}_p </tex><br /><tex> K \subset F </tex>, F - вектор-пространство надо полем K. (F - вектора, K - скалярные величины). <br /> <tex> V_1 + V_2 \in F; K \cdot V_1 \in F \Rightarrow </tex> получаем векторное пространство. <br /><tex>[F:K]</tex> - размерность поля F над полем K. | ||
− | + | }} |
Версия 20:06, 13 сентября 2010
Эта статья находится в разработке!
Определение: |
Расширим понятие кольца: введём обратный элемент
| — получим поле
Примеры:
- Поля:
Мультипликативная группа поля состоит из ненулевых элементов по умножению.
— обозначение суммы
Все разные
В первом случае наименьшее такое n называется характеристикой поля и обозначается
. Во втором случае характеристика поля полагается равной 0.
имеет характеристику p
имеет характеристику 0
— характеристику 0
Теорема
либо 0, либо простое число:
характеристика — противоречие с минимальностью
Подполе - некоторое поле
, замкнутое относительно сложения и умножения:- подполе.
Поле называется простым, если оно не содержит тривиальных подполей.
- подполе - не простое поле.
Определение: |
Два поля называются одинаковыми, если существует биекция из одного поля в другое, сохраняющая операции сложения и умножения. |
Утверждение: |
|
|