Теорема Лузина-Данжуа — различия между версиями
Komarov (обсуждение | вклад) |
Komarov (обсуждение | вклад) |
||
Строка 31: | Строка 31: | ||
Тогда <tex> \exists A_0 \subset A: \lambda A_0 > 0, \alpha(x) </tex> — ограничена на <tex> A_0 </tex>. <tex> A = \bigcup\limits_{n = 1}^{\infty} A(0 \le \alpha(x) \le n), \lambda A > 0 \Rightarrow \lambda A_n \to \lambda A \Rightarrow \exists n_0 : \lambda A_{n_0} > 0 </tex>, обозначим такой <tex>A_{n_0} </tex> за <tex> A_0 </tex>. | Тогда <tex> \exists A_0 \subset A: \lambda A_0 > 0, \alpha(x) </tex> — ограничена на <tex> A_0 </tex>. <tex> A = \bigcup\limits_{n = 1}^{\infty} A(0 \le \alpha(x) \le n), \lambda A > 0 \Rightarrow \lambda A_n \to \lambda A \Rightarrow \exists n_0 : \lambda A_{n_0} > 0 </tex>, обозначим такой <tex>A_{n_0} </tex> за <tex> A_0 </tex>. | ||
− | На <tex> A_0 </tex> <tex> \alpha </tex> — суммируема, по [[Классические теоремы о предельном переходе под знаком интеграла Лебега#Теорема Леви|теореме Б. Леви]], ряд можно почленно интегрировать. | + | На <tex> A_0 </tex> <tex> \alpha </tex> — суммируема, по [[Классические теоремы о предельном переходе под знаком интеграла Лебега#Теорема Леви|теореме Б. Леви]], ряд можно почленно интегрировать. {{TODO|t=Почему можно выделить такое множество <tex>A_0</tex> конечной меры?}} |
<tex> \int\limits_{A_0} \alpha(x) dx = \sum\limits_{n=1}^{\infty} r_n \int\limits_{A_0} \cos^2(nx + \varphi_{n, x}) = \sum\limits_{n=1}^{\infty} r_n \int\limits_{A_0} \frac{1 + \cos(2nx + 2\varphi_{n, x})}{2} = </tex> | <tex> \int\limits_{A_0} \alpha(x) dx = \sum\limits_{n=1}^{\infty} r_n \int\limits_{A_0} \cos^2(nx + \varphi_{n, x}) = \sum\limits_{n=1}^{\infty} r_n \int\limits_{A_0} \frac{1 + \cos(2nx + 2\varphi_{n, x})}{2} = </tex> |
Версия 16:05, 26 июня 2012
Рассмотрим произвольный тригонометрический ряд:
Если
сходится, то тригонометрический ряд будет абсолютно сходящимся.Обратное в общем случае неверно, тригонометрический ряд может абсолютно сходиться в бесконечном числе точек, но при этом числовой будет расходиться.
Рассмотрим, например,
, тогда при , то есть, ряд абсолютно сходится. Однако, , и ряд из коэффициентов расходится.Однако, есть важная теорема:
, следовательно, ряды и равносходятся.
Теорема (Лузин, Данжуа): |
Пусть тригонометрический ряд абсолютно сходится на множестве положительной меры. Тогда ряд из сходится, следовательно, исходный тригонометрический ряд будет абсолютно сходящимся на всей числовой оси. |
Доказательство: |
— сходится для любого в по условию теоремы, где . Пусть . измерима и конечна на , так как .Тогда — ограничена на . , обозначим такой за .На теореме Б. Леви, ряд можно почленно интегрировать. TODO: Почему можно выделить такое множество конечной меры? — суммируема, по. Оба интеграла стремятся к нулю по лемме Римана-Лебега, следовательно, разность этих интегралов с некоторого номера больше , а значит, -е слагаемое ряда больше . Значит, из сходимости исходного ряда по признаку сравнения следует сходимость . |
Таким образом, отождествили сходимость рядов
и .Запишем условие абсолютной сходимости на языке наилучших приближений.
Теорема: |
Тогда ряд Фурье абсолютно сходится. |
Доказательство: |
. Для абсолютной сходимости достаточно доказать, что в условиях теоремы. (используем равно Таким образом, получили, что , таким образом, ряд из сходится. |