Алгоритм Борувки — различия между версиями
Watson (обсуждение | вклад) (→Доказательство корректности) |
Watson (обсуждение | вклад) (→Описание алгоритма) |
||
Строка 3: | Строка 3: | ||
==Описание алгоритма== | ==Описание алгоритма== | ||
− | Пусть <tex>T</tex> подграф графа <tex>G</tex>. Изначально <tex>T</tex> | + | Пусть <tex>T</tex> подграф графа <tex>G</tex>. Изначально <tex>T</tex> содержит все вершины из <tex>G</tex> и не содержит ребер. |
Будем добавлять в <tex>T</tex> ребра следующим образом: | Будем добавлять в <tex>T</tex> ребра следующим образом: | ||
Пока <tex>T</tex> не является деревом | Пока <tex>T</tex> не является деревом | ||
− | # Для каждой компоненты | + | # Для каждой компоненты связности находим минимальное по весу ребро, которое связывает вершину из данной компоненты с вершиной, не принадлежащей данной компоненте. |
− | # Добавим в <tex>T</tex> все ребра, которые хотя бы для одной компоненты | + | # Добавим в <tex>T</tex> все ребра, которые хотя бы для одной компоненты связности оказались минимальными. |
Получившийся граф <tex>T</tex> является минимальным остовным деревом графа <tex>G</tex>. | Получившийся граф <tex>T</tex> является минимальным остовным деревом графа <tex>G</tex>. | ||
Строка 15: | Строка 15: | ||
Данный алгоритм может работать неправильно если в графе есть ребра, равные по весу. Например полный граф из 3-х вершин, вес каждого ребра равен 1. Избежать эту проблему можно, выбирая в пункте 1 среди ребер, равных по весу ребро с наименьшим номером. | Данный алгоритм может работать неправильно если в графе есть ребра, равные по весу. Например полный граф из 3-х вершин, вес каждого ребра равен 1. Избежать эту проблему можно, выбирая в пункте 1 среди ребер, равных по весу ребро с наименьшим номером. | ||
− | Доказательство будем | + | Доказательство будем проводить, считая веса всех ребер различными. |
==Доказательство корректности== | ==Доказательство корректности== |
Версия 23:48, 15 декабря 2012
Алгоритм Борувки — алгоритм поиска минимального остовного дерева (minimum spanning tree, MST) во взвешенном неориентированном связном графе. Впервые был опубликован в 1926 году Отакаром Борувкой.
Содержание
Описание алгоритма
Пусть
подграф графа . Изначально содержит все вершины из и не содержит ребер.Будем добавлять в
ребра следующим образом:Пока
не является деревом- Для каждой компоненты связности находим минимальное по весу ребро, которое связывает вершину из данной компоненты с вершиной, не принадлежащей данной компоненте.
- Добавим в все ребра, которые хотя бы для одной компоненты связности оказались минимальными.
Получившийся граф
является минимальным остовным деревом графа .Данный алгоритм может работать неправильно если в графе есть ребра, равные по весу. Например полный граф из 3-х вершин, вес каждого ребра равен 1. Избежать эту проблему можно, выбирая в пункте 1 среди ребер, равных по весу ребро с наименьшим номером.
Доказательство будем проводить, считая веса всех ребер различными.
Доказательство корректности
Лемма: |
Рассмотрим связный неориентированный взвешенный граф с инъективной весовой функцией .
Тогда после первой итерации главного цикла алгоритма Борувки получившийся подграф можно достроить до MST. |
Доказательство: |
Предположим обратное: пусть любое MST графа критерия Тарьяна, получаем противоречие. | не содержит . Рассмотрим какое-нибудь MST. Тогда существует ребро из такое что не принадлежит MST. Добавив ребро в MST, получаем цикл в котором не максимально, т.к оно было минимальным. Тогда, исходя из
Теорема: |
Алгоритм Борувки строит MST. |
Доказательство: |
Очевидно, что агоритм Борувки строит дерево.Будем доказывать что после каждой итерации главного цикла в алгоритме Борувки текущий подграф можно достроить до MST.Докажем это по индукции.
|
Реализация
Graph Boruvka(Graph G) while T.size < n init() // у вершины есть поле comp(компонента которой принадлежит вершина) findComp(T) // разбиваеv граф T на компоненты связынности обычным dfs-ом for uvE if u.comp != v.comp if minEdge[u.comp].w < uv.w minEdge[u.comp] = uv if minEdge[v.comp].w < uv.w minEdge[v.comp] = uv) for k Component // Component — множество компонент связанности в T T.addEdge(minEdge[k]) // добавляем ребро если его не было в T return T; |
Асимптотика
Время работы внутри главного цикла будет равно
.Количество итераций, которое выполняется главным циклом равно
так как на каждой итерации количество компонент связанности уменьшается в 2 раза (изначально количество компонент равно , в итоге должна стать одна компонента).Общее время работы алгоритма получается
.