Алгоритм Ху-Таккера — различия между версиями
Kris (обсуждение | вклад) м (→Пример) |
Shersh (обсуждение | вклад) |
||
Строка 1: | Строка 1: | ||
'''''Алгоритм Ху-Таккера''''' - алгоритм построения оптимального алфавитного дерева. | '''''Алгоритм Ху-Таккера''''' - алгоритм построения оптимального алфавитного дерева. | ||
− | ''Алфавитное дерево'' - дерево в котором при просмотре листьев слева направо символы идут в алфавитном порядке и код последующего лексикографически больше предыдущего. | + | ''Алфавитное дерево'' - дерево в котором при просмотре листьев слева направо символы идут в алфавитном порядке, и код последующего лексикографически больше предыдущего. |
==Определение== | ==Определение== | ||
Строка 22: | Строка 22: | ||
* '''Шаг 0.''' ''Введем следующие понятия''. | * '''Шаг 0.''' ''Введем следующие понятия''. | ||
**Две вершины называются совместимой парой, если они соседние или если между ними нет вершин алфавита. | **Две вершины называются совместимой парой, если они соседние или если между ними нет вершин алфавита. | ||
− | **Две вершины называются минимальной парой, когда их суммарный вес наименьший из всех. При равенстве весов | + | **Две вершины называются минимальной парой, когда их суммарный вес наименьший из всех. При равенстве весов выбирается пара с самой левой вершиной, из всех таких та, у которой правый узел расположен левее. |
**Минимальной совместимой парой называется наименьшая пара из всех совместимых. | **Минимальной совместимой парой называется наименьшая пара из всех совместимых. | ||
− | * '''Шаг 1.''' Изначально мы имеем только алфавит (и соответствующие веса) отсортированный лексикографически. | + | * '''Шаг 1.''' Изначально мы имеем только алфавит (и соответствующие веса), отсортированный лексикографически. |
− | * '''Шаг 2.''' ''Комбинирование''. По данной последовательности из n вершин строим последовательность из <tex>n-1</tex> вершины, комбинируя минимальную совместимую пару и заменяя ее левую вершину вершиной с весом <tex> w = w_{l} + w_{r} </tex> и удаляя правую. Эта процедура повторяется до тех пор пока не останется одна вершина. | + | * '''Шаг 2.''' ''Комбинирование''. По данной последовательности из n вершин строим последовательность из <tex>n-1</tex> вершины, комбинируя минимальную совместимую пару и заменяя ее левую вершину вершиной с весом <tex> w = w_{l} + w_{r} </tex> и удаляя правую. Эта процедура повторяется до тех пор, пока не останется одна вершина. |
* '''Шаг 3.''' ''Определение уровней''. Находим номер уровня <tex>l_{i}</tex> каждого листа относительно корня. | * '''Шаг 3.''' ''Определение уровней''. Находим номер уровня <tex>l_{i}</tex> каждого листа относительно корня. | ||
− | * '''Шаг 4.''' ''Перестройка''. После того, как номера уровней <tex>l_{1}, l_{2}, ..., l_{n}</tex> всех листьев определены, просматриваем последовательность слева направо и находим самый левый | + | * '''Шаг 4.''' ''Перестройка''. После того, как номера уровней <tex>l_{1}, l_{2}, ..., l_{n}</tex> всех листьев определены, просматриваем последовательность слева направо и находим самый левый номер максимального уровня, скажем, <tex>l_{i}=q</tex>. Тогда и <tex>l_{i+1}=q</tex> (в последовательности <tex>l_{1}, l_{2}, ..., l_{n}</tex> максимальные номера уровней всегда располагаются рядом). Создаем вершину уровня <tex>q-1</tex> вместо вершин уровня <tex>q</tex>. Другими словами, последовательность уровней <tex>l_{1}, l_{2}, ..., l_{q}, l_{q}, ..., l_{n}</tex> заменяется на <tex>l_{1}, l_{2}, ..., l_{q}-1, ..., l_{n}</tex>. Повторяем этот процесс до тех пор пока не останется одна вершина с уровнем 0. |
* Конец. | * Конец. | ||
Строка 34: | Строка 34: | ||
=== Стековый алгоритм перестройки === | === Стековый алгоритм перестройки === | ||
* Начало. | * Начало. | ||
− | * '''Шаг 0.''' Стек пуст. | + | * '''Шаг 0.''' [[Стек]] пуст. |
− | * '''Шаг 1.''' Если значение двух верхних элементов различно или в стеке всего один элемент перейти к шагу 2, иначе шагу 3. | + | * '''Шаг 1.''' Если значение двух верхних элементов различно или в стеке всего один элемент перейти к шагу 2, иначе к шагу 3. |
− | * '''Шаг 2.''' Поместить следующий элемент <tex>l_{i}</tex> на вершину стека. | + | * '''Шаг 2.''' Поместить следующий элемент <tex>l_{i}</tex> на вершину стека. Перейти к шагу 1. |
− | * '''Шаг 3.''' Удалить 2 верхних элемента стека, поместить в стек элемент со значением меньшим на единицу, чем удаленные | + | * '''Шаг 3.''' Удалить 2 верхних элемента стека, поместить в стек элемент со значением меньшим на единицу, чем удаленные. Если значение нового элемента равно нулю {{---}} остановиться, иначе перейти к шагу 1. |
* Конец. | * Конец. | ||
Строка 54: | Строка 54: | ||
[[Файл:Hu-Taker Layer2.png|300px]] | [[Файл:Hu-Taker Layer2.png|300px]] | ||
− | Выполним третий шаг воспользовавшись стековым алгоритмом и получим необходимое дерево. | + | Выполним третий шаг, воспользовавшись стековым алгоритмом, и получим необходимое дерево. |
[[Файл:Hu-Taker_eps3.gif|300px]][[Файл:Hu Takker eps3.png |300px]] | [[Файл:Hu-Taker_eps3.gif|300px]][[Файл:Hu Takker eps3.png |300px]] | ||
− | Осталось только назначить код для каждого символа | + | Осталось только назначить код для каждого символа. Это делается аналогично [[Алгоритм Хаффмана|коду Хаффмана]]: левым ребрам назначается 0, а правым 1. |
== Корректность алгоритма Ху-Таккера == | == Корректность алгоритма Ху-Таккера == | ||
Строка 68: | Строка 68: | ||
Для реализации данного алгоритма потребуется <tex>O(n)</tex> памяти и <tex>O(n \log n)</tex> времени на построение дерева. | Для реализации данного алгоритма потребуется <tex>O(n)</tex> памяти и <tex>O(n \log n)</tex> времени на построение дерева. | ||
− | Разберем оценку. Для доказательства такой оценки времени введем понятие ''локально минимальной совместимой пары'' (л.м.с.п), пара <tex>(w_{l},w_{r})</tex> является л.м.с.п, когда выполнены следующие условия <tex>w_{r}<w_{i}</tex> для всех вершин <tex>i</tex> совместимых с <tex>l</tex> и <tex>w_{l} \le w_{j}</tex> для всех вершин <tex>j</tex> совместимых с <tex>r</tex>. | + | Разберем оценку. Для доказательства такой оценки времени введем понятие ''локально минимальной совместимой пары'' (л.м.с.п), пара <tex>(w_{l},w_{r})</tex> является л.м.с.п, когда выполнены следующие условия <tex>w_{r}<w_{i}</tex> для всех вершин <tex>i</tex> совместимых с <tex>l</tex> и <tex>w_{l} \le w_{j}</tex> для всех вершин <tex>j</tex> совместимых с <tex>r</tex>. Также докажем следующую лемму: |
{{Лемма | {{Лемма | ||
|id=lemma1 | |id=lemma1 | ||
|about=1 | |about=1 | ||
|statement= | |statement= | ||
− | Пусть <tex>a</tex> | + | Пусть <tex>a</tex> {{---}} любая вершина в последовательности, состоящей из вершин алфавита и вершин, образованных в результате комбинации, <tex>w_{i}</tex> {{---}} вес наименьшей вершины <tex>i</tex>, совместимой с <tex>a</tex>. Если в результате комбинирования некоторой л.м.с.п. какая-нибудь новая вершина <tex>d</tex> становится совместимой c <tex>a</tex>, то <tex>w_{i}<w_{d}</tex>. В частности, в последовательности вершин будет оставаться л.м.с.п., пока комбинируются другие л.м.с.п. |
Строка 82: | Строка 82: | ||
Пусть комбинируется л.м.с.п. <tex>(b, c)</tex>, причем <tex>a</tex> ближе к <tex>b</tex>. Тогда между <tex>a</tex> и <tex>b</tex> нет вершин алфавита и хотя бы одна из <tex>b</tex>, <tex>c</tex> должна быть вершиной алфавита, иначе при слиянии <tex>(b, c)</tex> не появилось бы новых вершин (кроме <tex>bc</tex>), совместимых с <tex>a</tex>. | Пусть комбинируется л.м.с.п. <tex>(b, c)</tex>, причем <tex>a</tex> ближе к <tex>b</tex>. Тогда между <tex>a</tex> и <tex>b</tex> нет вершин алфавита и хотя бы одна из <tex>b</tex>, <tex>c</tex> должна быть вершиной алфавита, иначе при слиянии <tex>(b, c)</tex> не появилось бы новых вершин (кроме <tex>bc</tex>), совместимых с <tex>a</tex>. | ||
− | Заметим, что <tex>w_{i}</tex> может находиться в любой стороне от <tex>a</tex>. Если вершина <tex>w_{i}</tex> лежит справа от <tex>a</tex>, то она не вершина алфавита. Пусть <tex>d</tex> | + | Заметим, что <tex>w_{i}</tex> может находиться в любой стороне от <tex>a</tex>. Если вершина <tex>w_{i}</tex> лежит справа от <tex>a</tex>, то она не вершина алфавита. Пусть <tex>d</tex> {{---}} вершина, которая становится совместимой с <tex>a</tex> после слияния <tex>(b, c)</tex> (она может быть как алфавитной так и слитой). Тогда <tex>d</tex> должна быть совместима с <tex>c</tex> в исходной последовательности и в силу локальной минимальности пары <tex>(b, c)</tex> имеем <tex>w_{b} \le w_{d}</tex>. |
Но <tex>w_{i}<w_{b}</tex>, так как <tex>b</tex> совместима с <tex>a</tex> в исходной последовательности, а <tex>w_{i}</tex> является наименьшим совместимым с <tex>a</tex> весом. Поэтому <tex>w_{i} \le w_{b} \le w_{d}</tex>. | Но <tex>w_{i}<w_{b}</tex>, так как <tex>b</tex> совместима с <tex>a</tex> в исходной последовательности, а <tex>w_{i}</tex> является наименьшим совместимым с <tex>a</tex> весом. Поэтому <tex>w_{i} \le w_{b} \le w_{d}</tex>. | ||
Строка 90: | Строка 90: | ||
− | Теперь согласно этой лемме нам не придется искать минимально совместимую пару, что весьма долго | + | Теперь согласно этой лемме нам не придется искать минимально совместимую пару, что весьма долго. Достаточно лишь находить л.м.с.п., при этом не важно, в каком порядке комбинировать л.м.с.п. По этому нам необходимо иметь массив размера <tex>n</tex>, из которого мы будем удалять л.м.с.п и создавать новую вершину. На нем легко будет осуществлять поиск л.м.с.п. А так же необходим массив размера <tex>2n</tex> для реализации следующего шага, хранящий дерево. Второй шаг легко осуществить проходом по дереву, имея сохраненное дерево. Третий шаг, реализованный стековым алгоритмом, работает за <tex>2n</tex> времени и требует <tex>4n</tex> памяти <tex>n</tex> на стек, <tex>n</tex> на хранения уровней вершин и <tex>2n</tex> на хранение итогового дерева. Итак, общая оценка как раз получается <tex>O(n)</tex> памяти и <tex>O(n \log n)</tex> времени. |
== Смотри также == | == Смотри также == |
Версия 19:14, 17 декабря 2012
Алгоритм Ху-Таккера - алгоритм построения оптимального алфавитного дерева.
Алфавитное дерево - дерево в котором при просмотре листьев слева направо символы идут в алфавитном порядке, и код последующего лексикографически больше предыдущего.
Содержание
Определение
Определение: |
Пусть 1. не является префиксом для , при2. для всех , выполнено3. при удовлетворенности условия 2, называется алгоритмом Ху-Таккера. минимальна ( — длина кода ) | — алфавит из n различных символов, — соответствующий ему набор весов. Тогда алгоритм выбора набора бинарных кодов , такой, что:
Алгоритм
Алгоритм Ху-Таккера
- Начало.
- Шаг 0. Введем следующие понятия.
- Две вершины называются совместимой парой, если они соседние или если между ними нет вершин алфавита.
- Две вершины называются минимальной парой, когда их суммарный вес наименьший из всех. При равенстве весов выбирается пара с самой левой вершиной, из всех таких та, у которой правый узел расположен левее.
- Минимальной совместимой парой называется наименьшая пара из всех совместимых.
- Шаг 1. Изначально мы имеем только алфавит (и соответствующие веса), отсортированный лексикографически.
- Шаг 2. Комбинирование. По данной последовательности из n вершин строим последовательность из вершины, комбинируя минимальную совместимую пару и заменяя ее левую вершину вершиной с весом и удаляя правую. Эта процедура повторяется до тех пор, пока не останется одна вершина.
- Шаг 3. Определение уровней. Находим номер уровня каждого листа относительно корня.
- Шаг 4. Перестройка. После того, как номера уровней всех листьев определены, просматриваем последовательность слева направо и находим самый левый номер максимального уровня, скажем, . Тогда и (в последовательности максимальные номера уровней всегда располагаются рядом). Создаем вершину уровня вместо вершин уровня . Другими словами, последовательность уровней заменяется на . Повторяем этот процесс до тех пор пока не останется одна вершина с уровнем 0.
- Конец.
Заметим, что перестройку легко можно организовать с помощью следующего стекового алгоритма.
Стековый алгоритм перестройки
- Начало.
- Шаг 0. Стек пуст.
- Шаг 1. Если значение двух верхних элементов различно или в стеке всего один элемент перейти к шагу 2, иначе к шагу 3.
- Шаг 2. Поместить следующий элемент на вершину стека. Перейти к шагу 1.
- Шаг 3. Удалить 2 верхних элемента стека, поместить в стек элемент со значением меньшим на единицу, чем удаленные. Если значение нового элемента равно нулю — остановиться, иначе перейти к шагу 1.
- Конец.
Пример
Для примера возьмем алфавит
a,b,c,d,e,f,t,g,h,i,j , а набор весов 8,6,2,3,4,7,11,9,8,1,3 .Выполним первый шаг алгоритма.
Объединим сначала
и , получим вершину с весом , затем и на вершину веса , и т.д. пока не останется одна вершина.Выполним второй шаг. Определим уровни для каждого листа
3,3,5,5,4,3,3,3,3,4,4 .Выполним третий шаг, воспользовавшись стековым алгоритмом, и получим необходимое дерево.
Осталось только назначить код для каждого символа. Это делается аналогично коду Хаффмана: левым ребрам назначается 0, а правым 1.
Корректность алгоритма Ху-Таккера
Как пишет Д. Кнут короткого доказательства алгоритма не известно, и вероятно оно никогда не будет найдено. Для доказательства своего алгоритма Ху и Таккеру потребовалось 3 теоремы и 2 леммы (См. книгу Т.Ч.Ху и М.Т.Шинг Комбинаторные алгоритмы
стр.172).Сложность алгоритма
Для реализации данного алгоритма потребуется
памяти и времени на построение дерева.Разберем оценку. Для доказательства такой оценки времени введем понятие локально минимальной совместимой пары (л.м.с.п), пара
является л.м.с.п, когда выполнены следующие условия для всех вершин совместимых с и для всех вершин совместимых с . Также докажем следующую лемму:Лемма (1): |
Пусть — любая вершина в последовательности, состоящей из вершин алфавита и вершин, образованных в результате комбинации, — вес наименьшей вершины , совместимой с . Если в результате комбинирования некоторой л.м.с.п. какая-нибудь новая вершина становится совместимой c , то . В частности, в последовательности вершин будет оставаться л.м.с.п., пока комбинируются другие л.м.с.п.
|
Доказательство: |
Рассмотрим произвольную вершину и предположим, что вес наименьшей вершины, совместимой с , равен .Пусть комбинируется л.м.с.п. , причем ближе к . Тогда между и нет вершин алфавита и хотя бы одна из , должна быть вершиной алфавита, иначе при слиянии не появилось бы новых вершин (кроме ), совместимых с .Заметим, что может находиться в любой стороне от . Если вершина лежит справа от , то она не вершина алфавита. Пусть — вершина, которая становится совместимой с после слияния (она может быть как алфавитной так и слитой). Тогда должна быть совместима с в исходной последовательности и в силу локальной минимальности пары имеем .Но Мы доказали, что вес наименьшей вершины, совместимой с любой вершиной, не может уменьшиться. Отсюда следует, что любая л.м.с.п. , так как совместима с в исходной последовательности, а является наименьшим совместимым с весом. Поэтому . останется л.м.с.п. после слияния другой л.м.с.п., потому что останется наименьшей вершиной, совместимой с , и наоборот. |
Теперь согласно этой лемме нам не придется искать минимально совместимую пару, что весьма долго. Достаточно лишь находить л.м.с.п., при этом не важно, в каком порядке комбинировать л.м.с.п. По этому нам необходимо иметь массив размера , из которого мы будем удалять л.м.с.п и создавать новую вершину. На нем легко будет осуществлять поиск л.м.с.п. А так же необходим массив размера для реализации следующего шага, хранящий дерево. Второй шаг легко осуществить проходом по дереву, имея сохраненное дерево. Третий шаг, реализованный стековым алгоритмом, работает за времени и требует памяти на стек, на хранения уровней вершин и на хранение итогового дерева. Итак, общая оценка как раз получается памяти и времени.
Смотри также
Литература
- Т.Ч.Ху и М.Т.Шинг Комбинаторные алгоритмы — стр. 166 — ISBN 5-85746-761-6
- Дональд Кнут Искусство программирования, том 3. Сортировка и поиск = The Art of Computer Programming, vol.3. Sorting and Searching. — 2-е изд. — М.: «Вильямс», 2007. — 824 с. — ISBN 5-8459-0082-4