Теорема Холла — различия между версиями
(→Теорема) |
(→Теорема) |
||
Строка 21: | Строка 21: | ||
|proof= | |proof= | ||
1)Очевидно, что если существует полное паросочетание, то для любого <tex>A \subset L </tex> выполнено <tex>|A| \leq |N(A)|</tex>. У любого подмножества вершин есть по крайней мере столько же соседей. | 1)Очевидно, что если существует полное паросочетание, то для любого <tex>A \subset L </tex> выполнено <tex>|A| \leq |N(A)|</tex>. У любого подмножества вершин есть по крайней мере столько же соседей. | ||
− | 2) | + | 2)В обратную сторону будем доказывать так : |
}} | }} | ||
==Ссылки== | ==Ссылки== | ||
==Смотри также== | ==Смотри также== |
Версия 18:19, 22 декабря 2012
Содержание
Определения
Пусть
- двудольный граф.Определение: |
Полным(совершенным) паросочетанием называется паросочетание в которое входят все вершины. |
Определение: |
Пусть | . Множeством соседей
Теорема
Теорема (Холл): |
Полное паросочетание существует тогда и только тогда, когда для любого выполнено . |
Доказательство: |
1)Очевидно, что если существует полное паросочетание, то для любого 2)В обратную сторону будем доказывать так : выполнено . У любого подмножества вершин есть по крайней мере столько же соседей. |