Теорема Холла — различия между версиями
Watson (обсуждение | вклад) (→Пояснения к доказательству) |
Watson (обсуждение | вклад) (→Пояснения к доказательству) |
||
Строка 34: | Строка 34: | ||
Во множество H вошли вершины с номерами 1,3,4,5,7,8. | Во множество H вошли вершины с номерами 1,3,4,5,7,8. | ||
+ | |||
+ | Ненасыщенная вершина из правой доли всегда найдется(в примере вершина с номером 8), т.к иначе получается что в Hr входят только насыщенные вершины, и Hl получается равным Hr + 1(соседи по паросочетанию и вершина, которую пытаемся добавить) | ||
Цепь {4,7,3,8} является удлиняющей для текущего паросочетания. | Цепь {4,7,3,8} является удлиняющей для текущего паросочетания. |
Версия 03:07, 24 декабря 2012
Определения
Пусть
- двудольный граф. - множество вершин первой доли. - множество вершин правой доли.Определение: |
Полным(совершенным) паросочетанием называется паросочетание, в которое входят все вершины. |
Определение: |
Пусть | . Множeство соседей определим формулой:
Теорема
Теорема (Холл): |
Полное паросочетание существует тогда и только тогда, когда для любого выполнено . |
Доказательство: |
Очевидно, что если существует полное паросочетание, то для любого выполнено . У любого подмножества вершин есть по крайней мере столько же "соседей"("соседи по парасочетанию"). В обратную сторону докажем по индукции(будем добавлять в изначально пустое паросочетание по одному ребру, и доказывать, что мы можем это сделать, если не полное). Таким образом, в конце получим что — полное паросочетание.
|
Пояснения к доказательству
Пусть было построено паросочетание размером 3(синие ребра).
Добавляем вершину с номером 4.
Во множество H вошли вершины с номерами 1,3,4,5,7,8.
Ненасыщенная вершина из правой доли всегда найдется(в примере вершина с номером 8), т.к иначе получается что в Hr входят только насыщенные вершины, и Hl получается равным Hr + 1(соседи по паросочетанию и вершина, которую пытаемся добавить)
Цепь {4,7,3,8} является удлиняющей для текущего паросочетания.
Увеличив текущее парасочетание вдоль неё мы насытим вершину с номером 4.
Примечания
Иногда теорему называют теоремой о свадьбах.
Также теорема обобщается на граф, имеющий произвольное множество долей.