Теорема Холла — различия между версиями
Watson (обсуждение | вклад) (→Пояснения к доказательству) |
Watson (обсуждение | вклад) (→Пояснения к доказательству) |
||
Строка 29: | Строка 29: | ||
==Пояснения к доказательству== | ==Пояснения к доказательству== | ||
[[Файл:aba.gif|600px|thumb|right|Построение полного паросочетания(Теорема Холла)]] | [[Файл:aba.gif|600px|thumb|right|Построение полного паросочетания(Теорема Холла)]] | ||
+ | |||
Пусть было построено паросочетание размером 3(синие ребра). | Пусть было построено паросочетание размером 3(синие ребра). | ||
Версия 03:31, 24 декабря 2012
Определения
Пусть
- двудольный граф. - множество вершин первой доли. - множество вершин правой доли.Определение: |
Полным(совершенным) паросочетанием называется паросочетание, в которое входят все вершины. |
Определение: |
Пусть | . Множeство соседей определим формулой:
Теорема
Теорема (Холл): |
Полное паросочетание существует тогда и только тогда, когда для любого выполнено . |
Доказательство: |
Очевидно, что если существует полное паросочетание, то для любого выполнено . У любого подмножества вершин есть по крайней мере столько же "соседей"("соседи по парасочетанию"). В обратную сторону докажем по индукции(будем добавлять в изначально пустое паросочетание по одному ребру, и доказывать, что мы можем это сделать, если не полное). Таким образом, в конце получим что — полное паросочетание.
|
Пояснения к доказательству
Пусть было построено паросочетание размером 3(синие ребра).
Добавляем вершину с номером 4.
Во множество H вошли вершины с номерами 1,3,4,5,7,8.
Ненасыщенная вершина из правой доли всегда найдется(в примере вершина с номером 8), т.к иначе получаем противоречи:
- в входят только насыщенные вершины
- в по карйней мере вершин("соседи" по паросочетанию для каждой вершины из и ещё одна вершина которую пытаемся добавить).
Цепь {4,7,3,8} является удлиняющей для текущего паросочетания.
Увеличив текущее парасочетание вдоль неё мы насытим вершину с номером 4.
Примечания
Иногда теорему называют теоремой о свадьбах.
Также теорема обобщается на граф, имеющий произвольное множество долей.