Использование обхода в глубину для топологической сортировки — различия между версиями
Proshev (обсуждение | вклад) |
(→Источники) |
||
Строка 43: | Строка 43: | ||
== Источники == | == Источники == | ||
− | * | + | * [http://myweb.facstaff.wwu.edu/sarkara/brooks.pdf Внятное доказательство на английском] |
− | * [http:// | + | * [http://en.wikipedia.org/wiki/Brooks'_theorem Теорема Брукса на вики] |
[[Категория: Алгоритмы и структуры данных]] | [[Категория: Алгоритмы и структуры данных]] | ||
[[Категория: Обход в глубину]] | [[Категория: Обход в глубину]] |
Версия 18:49, 28 декабря 2012
Топологическая сортировка ориентированного ациклического графа представляет собой такое линейное упорядочение всех его вершин, что если , то при таком упорядочении располагается до (если граф не является ациклическим, такая сортировка невозможна).
Содержание
Применение
Топологическая сортировка применяется в самых разных ситуациях, например при создании параллельных алгоритмов, когда по некоторому описанию алгоритма нужно составить граф зависимостей его операций и, отсортировав его топологически, определить, какие из операций являются независимыми и могут выполняться параллельно (одновременно). Примером использования топологической сортировки может служить создание карты сайта, где имеет место древовидная система разделов. Также топологическая сортировка применяется при обработке исходного кода программы в некоторых компиляторах и IDE, где строится граф зависимостей между сущностями, после чего они инициализируются в нужном порядке, либо выдается ошибка о циклической зависимости.
Постановка задачи
Теорема: | ||||||
— ациклический ориентированный граф, тогда | ||||||
Доказательство: | ||||||
Определим алгоритма dfs. Рассмотрим функцию . Очевидно, что такая функция подходит под критерий функции из условия теоремы, если выполняется следующее утверждение: как порядковый номер окраски вершины в черный цвет в результате работы
| ||||||
Алгоритм
Из определения функции
мгновенно следует алгоритм топологической сортировки:doTopSort(graph G) { fill(visited, false); time = 0; for (vertex v : v in graph G) { if (!visited[v]) { dfs(v); } } }
dfs(vertex u) { visited[u] = true; for (vertex v : exists edge uv) { if (!visited[v]) { dfs(v); } } topSortAnswer[u] = n - time++; }
Время работы этого алгоритма соответствует времени работы алгоритма поиска в глубину, то есть равно
.