Задача о рюкзаке — различия между версиями
Margarita (обсуждение | вклад) м |
|||
Строка 21: | Строка 21: | ||
== Метод динамического программирования == | == Метод динамического программирования == | ||
− | Пусть <tex>A(s, n)</tex> есть максимальная стоимости предметов, которые можно уложить в рюкзак вместимости n, если можно использовать только первые s предметов из заданных k. | + | Пронумеруем предметы по порядку, как дано в условии <tex>k=\{k_1, k_2,...,k_n. Пусть <tex>A(s, n)</tex> есть максимальная стоимости предметов, которые можно уложить в рюкзак вместимости n, если можно использовать только первые s предметов из заданных k. |
<tex>A(s, 0) = 0</tex> | <tex>A(s, 0) = 0</tex> | ||
Строка 49: | Строка 49: | ||
for s = 1..k | for s = 1..k | ||
for n = 0..W //Перебираем для каждого s, все n | for n = 0..W //Перебираем для каждого s, все n | ||
− | if n >= w[s] //Если текущий предмет | + | if n >= w[s] //Если текущий предмет вмещается в рюкзак |
A[s][n] = max(A[s-1][n], A[s-1][n-w[s]]+p[s]) //выбираем класть его или нет | A[s][n] = max(A[s-1][n], A[s-1][n-w[s]]+p[s]) //выбираем класть его или нет | ||
else | else | ||
Строка 105: | Строка 105: | ||
Максимальная стоимость рюкзака находится в <tex>A(5, 13)</tex>. | Максимальная стоимость рюкзака находится в <tex>A(5, 13)</tex>. | ||
− | ''' | + | '''Восстановление набора предметов, из которых состоит максимально дорогой рюкзак.''' |
+ | Будем начиная с ячейки, соответствующей ответу, то есть вместимость <tex> = W</tex>, и можно использовать для составления набора все предметы, определять, входит последний предмет в набор или нет. Для этого сравниваем значение в рассматриваемой ячейке с: | ||
+ | # Со значением в ячейке с такой же вместимостью, и можно использовать все предметы имеющие | ||
Версия 10:55, 29 декабря 2012
Задача о рюкзаке — дано
предметов, предмет имеет массу и стоимость . Необходимо выбрать из этих предметов такой набор, чтобы суммарная масса не превосходила заданной величины (вместимость рюкзака), а суммарная стоимость была максимальна.Содержание
Формулировка задачи
Дано
предметов, - вместимость рюкзака, — соответствующий ему набор положительных целых весов, — соответствующий ему набор положительных целых стоимостей. Нужно определить набор бинарных величин , где , если предмет включен в набор, , если предмет не включен, такой что:- максимальна.
Варианты решения
Задачу о рюкзаке можно решить несколькими способами:
- Перебирая все подмножества набора из k предметов. Сложность такого решения .
- Методом Meet-in-the-middle. Сложность решения
- Метод динамического программирования. Сложность - .
Метод динамического программирования
Пронумеруем предметы по порядку, как дано в условии
есть максимальная стоимости предметов, которые можно уложить в рюкзак вместимости n, если можно использовать только первые s предметов из заданных k.
Найдем
. Возможны 2 варианта:- Если предмет не попал в рюкзак. Тогда
- Если попал в рюкзак. Тогда
Таким образом:
Теперь найдем набор предметов, входящих в рюкзак.
Рассмотрим входит ли
- последний предмет в рюкзак. Если равно , значит последний предмет не входит в набор, иначе входит. Так рекусривно идем до первого предмета. Получаем искомый набор.Реализация
Сначала генерируем
.for i = 0..W A[0][i] = 0 for i = 0..k A[i][0] = 0 //Первые элементы приравниваем 0 for s = 1..k for n = 0..W //Перебираем для каждого s, все n if n >= w[s] //Если текущий предмет вмещается в рюкзак A[s][n] = max(A[s-1][n], A[s-1][n-w[s]]+p[s]) //выбираем класть его или нет else A[s][n] = A[s-1][n] //иначе, не кладем
Затем найдем набор
предметов, входящих в рюкзак, рекурсивной функцией:findAns(s, n) if A[s][n] == 0 return if A[s-1][n] == A[s][n] findAns(s-1, n) else findAns(s-1, n - w[s]); ans.push(s);
Сложность алгоритма
Пример
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | |
s = 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
s = 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
s = 2 | 0 | 0 | 0 | 1 | 6 | 6 | 6 | 7 | 7 | 7 | 7 | 7 | 7 | 7 |
s = 3 | 0 | 0 | 0 | 1 | 6 | 6 | 6 | 7 | 7 | 10 | 10 | 10 | 11 | 11 |
s = 4 | 0 | 0 | 0 | 1 | 6 | 6 | 6 | 7 | 7 | 10 | 10 | 10 | 13 | 13 |
s = 5 | 0 | 0 | 0 | 1 | 6 | 6 | 6 | 7 | 7 | 10 | 10 | 10 | 13 | 13 |
Числа от 0 до 13 в первой строчке обозначают вместимость рюкзака.
В первой строке как только вместимость рюкзака
, добавляем в рюкзак 1 предмет.Рассмотрим
, при каждом так как сравниваем и записываем в стоимость либо рюкзака без третьего предмета, но с таким же весом, либо с третьим предметом, тогда стоимость равна стоимость третьего предмета плюс стоимость рюкзака с вместимостью на меньше.Максимальная стоимость рюкзака находится в
.Восстановление набора предметов, из которых состоит максимально дорогой рюкзак.
Будем начиная с ячейки, соответствующей ответу, то есть вместимость
, и можно использовать для составления набора все предметы, определять, входит последний предмет в набор или нет. Для этого сравниваем значение в рассматриваемой ячейке с:- Со значением в ячейке с такой же вместимостью, и можно использовать все предметы имеющие
Таким образом, набор состоит из предметов.
Стоимость рюкзака
Вес рюкзака