Корреляция случайных величин — различия между версиями
Kabanov (обсуждение | вклад) м (→Определение корреляции по диаграмме) |
Kabanov (обсуждение | вклад) (→Определение) |
||
Строка 3: | Строка 3: | ||
|definition= | |definition= | ||
<b>Корреляция случайных величин</b>: пусть <tex>\eta,\xi</tex> — две [[Дискретная_случайная_величина | случайные величины]], определённые на одном и том же вероятностном пространстве. Тогда их корреляция определяется следующим образом: | <b>Корреляция случайных величин</b>: пусть <tex>\eta,\xi</tex> — две [[Дискретная_случайная_величина | случайные величины]], определённые на одном и том же вероятностном пространстве. Тогда их корреляция определяется следующим образом: | ||
− | : <tex dpi = "150">Corr(\eta,\xi)={Cov(\eta,\xi) \over \sigma_{\eta} \times \sigma_{\xi}}</tex> | + | : <tex dpi = "150">Corr(\eta,\xi)={Cov(\eta,\xi) \over \sigma_{\eta} \times \sigma_{\xi}}</tex>, где <tex>\sigma_{\eta}=\sqrt{D(\eta)}</tex> называется среднеквадратичным отклонением и равно квадратному корню из [[Дисперсия_случайной_величины | дисперсии]], а <tex>Cov(\eta,\xi)</tex> - [[Ковариация_случайных_величин | ковариацией случайных величин]] |
}} | }} | ||
Версия 01:01, 31 декабря 2012
Содержание
Определение
Определение: |
Корреляция случайных величин: пусть случайные величины, определённые на одном и том же вероятностном пространстве. Тогда их корреляция определяется следующим образом:
| — две
Вычисление
Заметим, что
Свойства корреляции
Утверждение: |
Корреляция симметрична:
|
|
Утверждение: |
Корреляция случайной величины с собой равна 1: |
|
Утверждение: |
Если независимые случайные величины, то
|
Пусть независимые величины. Тогда , где - их математическое ожидание. Получаем: и -Но обратное неверно: Пусть - случайная величина, распределенная симметрично около 0, а . , но и - зависимые величины. |
Утверждение: |
Корреляция лежит не на всей вещественной оси
|
Для доказательства используем свойство ковариации: . Тогда при раскрытии модуля получаем:
Поделим левую и правую части на и получим: , т.е.
|
Примеры
В общем смысле корреляция - это зависимость между случайными величинами, когда изменение одной влечет изменение распределения другой.
Определение корреляции по диаграмме
1. Соответственно, на первом графике изображена положительная корреляция, когда увеличение Y ведет к постепенному увеличению X.
2. Второй график отображает отрицательную корреляцию, когда увеличение X воздействует на постепенное уменьшение Y.
3. Третий график показывает, что X и Y связаны слабо, их распределение не зависит от изменения друг друга, поэтому корреляция между ними будет равна 0.