Корреляция случайных величин — различия между версиями
Kabanov (обсуждение | вклад) (→Определение) |
Kabanov (обсуждение | вклад) (→Определение корреляции по диаграмме) |
||
Строка 55: | Строка 55: | ||
3. '''Третий график''' показывает, что X и Y связаны слабо, их распределение не зависит от изменения друг друга, поэтому корреляция между ними будет '''равна 0'''. | 3. '''Третий график''' показывает, что X и Y связаны слабо, их распределение не зависит от изменения друг друга, поэтому корреляция между ними будет '''равна 0'''. | ||
+ | |||
+ | === Определение корреляции по таблице === | ||
+ | Рассмотрим 2 случайные величины: курс акций нефтедобывающей компании (X) и цены на нефть (Y). | ||
+ | |||
+ | {| border="1" | ||
+ | |- | ||
+ | ! X || 2003,6 || 2013,2 || 2007,6 || 2007,4 || 2039,9 || 2025 || 2007 || 2017 || 2015,6 || 2011 | ||
+ | |- | ||
+ | ! Y || 108,4 || 107,96 || 108,88 || 110,44 || 110,2 || 108,97 || 109,15 || 108,8 || 111,2 || 110,23 | ||
+ | |- | ||
+ | |} | ||
+ | Для упрощения вычислений определим X и Y как равновероятные случайные величины. Тогда их математическое ожидание и дисперсию легко посчитать: | ||
+ | |||
+ | <tex>E(X) = 2014,73</tex> | ||
+ | |||
+ | <tex>E(Y) = 109,42</tex> | ||
+ | |||
+ | <tex>D(X) = 104,9361</tex> | ||
+ | |||
+ | <tex>D(Y) = 0,959661</tex> | ||
+ | |||
+ | Используя формулу, <tex dpi = "150">Corr(\eta,\xi)={E(\xi \times \eta) - E(\xi) \times E(\eta) \over {\sigma_{\eta} \times \sigma_{\xi}}}</tex> определяем, что корреляция между величинами X и Y составляет 0,240935496, т.е. 24%. | ||
== Ссылки == | == Ссылки == |
Версия 01:47, 31 декабря 2012
Содержание
Определение
Определение: |
Корреляция случайных величин: пусть случайные величины, определённые на одном и том же вероятностном пространстве. Тогда их корреляция определяется следующим образом:
| — две
Вычисление
Заметим, что
Свойства корреляции
Утверждение: |
Корреляция симметрична:
|
|
Утверждение: |
Корреляция случайной величины с собой равна 1: |
|
Утверждение: |
Если независимые случайные величины, то
|
Пусть независимые величины. Тогда , где - их математическое ожидание. Получаем: и -Но обратное неверно: Пусть - случайная величина, распределенная симметрично около 0, а . , но и - зависимые величины. |
Утверждение: |
Корреляция лежит не на всей вещественной оси
|
Для доказательства используем свойство ковариации: . Тогда при раскрытии модуля получаем:
Поделим левую и правую части на и получим: , т.е.
|
Примеры
В общем смысле корреляция - это зависимость между случайными величинами, когда изменение одной влечет изменение распределения другой.
Определение корреляции по диаграмме
1. Соответственно, на первом графике изображена положительная корреляция, когда увеличение Y ведет к постепенному увеличению X.
2. Второй график отображает отрицательную корреляцию, когда увеличение X воздействует на постепенное уменьшение Y.
3. Третий график показывает, что X и Y связаны слабо, их распределение не зависит от изменения друг друга, поэтому корреляция между ними будет равна 0.
Определение корреляции по таблице
Рассмотрим 2 случайные величины: курс акций нефтедобывающей компании (X) и цены на нефть (Y).
X | 2003,6 | 2013,2 | 2007,6 | 2007,4 | 2039,9 | 2025 | 2007 | 2017 | 2015,6 | 2011 |
---|---|---|---|---|---|---|---|---|---|---|
Y | 108,4 | 107,96 | 108,88 | 110,44 | 110,2 | 108,97 | 109,15 | 108,8 | 111,2 | 110,23 |
Для упрощения вычислений определим X и Y как равновероятные случайные величины. Тогда их математическое ожидание и дисперсию легко посчитать:
Используя формулу,
определяем, что корреляция между величинами X и Y составляет 0,240935496, т.е. 24%.