Изменения

Перейти к: навигация, поиск

Метрические пространства

1752 байта добавлено, 06:11, 2 января 2013
м
Нет описания правки
Некоторые примеры метрических пространств:
* <tex>X = \mathbb{R}, \rho(x, y) = | x - y |</tex>111 
* <tex>X = \mathbb{R}^n, \rho(\overline x, \overline y) = \sqrt{\sum\limits_{i=1}^n (x_i - y_i)^2}</tex>
 
* <tex>X = \mathbb{R}^{\infty}</tex>. Превращение в МП должно быть связано с желаемой операцией предельного перехода. В случае конечномерного пространства сходимость совпадает с покоординатной сходимостью, хотим того же самого для бесконечномерного. Введем метрику: <tex>\rho(\overline x, \overline y) = \sum\limits_{n = 1}^{\infty} {1 \over 2^n}{|x_n - y_n| \over 1 + |x_n - y_n|}</tex> (TODO: как она называется, кстати?). Проверим, что эта метрика удовлетворяет аксиомам:
** этот ряд всегда сходящийся, так как мажорируется убывающей геометрической прогрессией <tex>\sum\limits_{n=1}^{\infty} {1 \over 2^n} = 1</tex>, соответственно, расстояние ограничено единицей.
** первая аксиома: неотрицательность очевидна, равенство метрики нулю в обе стороны очевидно
** вторая аксиома: еще очевиднее
** третья аксиомалегко вытекает из следующего утверждения: рассмотрим {{Утверждение|statement=<tex> {|x - z| \over 1 + |x - z|} \le {|x - y| \over 1 + |x - y|} + {|y - z| \over 1 + |y - z|}</tex>|proof=Рассмотрим <tex>f(t) = {t \over 1 + t}</tex>. Так как <tex> f(t) </tex> возрастает при <tex> t \in (-1, \infty) </tex>, поэтому, если <tex> -1 < t_1 < t_2 </tex>, <tex> f(t_1) < f(t_2) </tex>. Также <tex>f</tex> выпукла вверх, на том же промежутке: <tex>f(t_1 + t_2) \le f(t_1) + f(t_2)</tex>, то есть все три аксиомы выполняются. TODO<tex> |x - z| \le |x - y| + |y - z| </tex> по свойствам <tex> | \cdot | </tex>.По показаному выше: ШТО? Почему?<tex> f(|x - z|) \le f(|x - y| + |y - z|) \le f(|x - y|) + f(|y - z|) </tex>. Первый переход сделан по возрастаннию <tex> f( Откуда это неравенство и как из этого следует выполнение аксиомы?t) </tex>, второй -- по выпуклости вверх.}}  {{Утверждение*: |statement=Сходимость в этой метрике <tex> \mathbb{R}^{\infty} </tex> эквивалентна покоординатной . |proof=Пусть <tex> x^{(n)} = (x^{(TODOn)}_1, \dots, x^{(n)}_k, \dots), x = (x_1, \dots, x_k, \dots) </tex>. Покажем, что <tex> x^{(n)} \to x \iff \forall k: почему?x^{(n)}_k \to x_k </tex>.  В прямую сторону: <tex> f(|x^{(n)}_k - x_k|) \le 2^k \rho(x^{(n)}, x) </tex>. Пусть <tex> \rho(x^{(n)}, x) < {\varepsilon \over 2^k} </tex>.Тогда <tex> f(|x^{(n)}_k - x_k|) \le \varepsilon </tex>. Так как <tex> t = {1 \over 1 - f(t)} - 1 </tex>, то <tex> t \to 0 </tex>, когда <tex> f(t) \to 0 </tex>, а значит, покоординатная сходимость выполняется.  В обратную сторону: подберем такое <tex> k_0 </tex>, чтобы <tex> {\sum\limits_{k = k_0 + 1}^{\infty} {1 \over 2^k}} < \varepsilon </tex>. Возьмем <tex> n_0 </tex> таким, чтобы <tex> \forall k \le k_0, n > n_0: |x^{(n)}_k - x_k| < \varepsilon </tex>. Тогда <tex> \rho(x^{(n)}, x) < \sum\limits_{k = 1}^{k_0} {\varepsilon \over 2^k} + \varepsilon < 2 \varepsilon </tex>. Устремляя <tex> \varepsilon </tex> к нулю, получаем необходимое. }} 
* В любом пространстве <tex>X</tex> можно ввести дискретную метрику: <tex>\rho(x, y) = \begin{cases} 0; & x = y \\ 1; & x \ne y \end{cases}</tex>. Заметим, что в дискретной метрике сходятся только стационарные последовательности.
* <tex>X = \mathbb{R}^{\mathbb{I}}</tex>, то есть множество всех функций из <tex>[0; 1]</tex> в <tex>\mathbb{R}</tex>. Это пространство не метризуется, то есть не существует метрики, в которой сходимость эквивалентна поточечной (TODO: почему??)
26
правок

Навигация