Топологические векторные пространства — различия между версиями
(тут нужен кто-то адекватный, чтобы вставить пропуски, а то я запутался) |
|||
Строка 6: | Строка 6: | ||
{{Определение | {{Определение | ||
|definition= | |definition= | ||
− | '''Топологическое векторное пространство''' — линейное пространство, наделенной такой топологией, что операции сложения векторов и умножения на скаляр в ней непрерывны, то есть: | + | '''Топологическое векторное пространство''' — линейное пространство, наделенной такой топологией, что операции сложения векторов и умножения на скаляр в ней непрерывны в этой топологии, то есть: |
* непрерывность умножения на скаляр: $\alpha x \to \alpha_0 x_0$, если $\alpha \to \alpha_0$, $x \to x_0$. Означает, что для любой окрестности $U(\alpha_0 x_0)$ существует $ \varepsilon > 0$ и существует $U(x_0): |\alpha - \alpha_0| < \varepsilon, x \in U(x_0) \Rightarrow \alpha x \in U(\alpha_0 x_0)$ | * непрерывность умножения на скаляр: $\alpha x \to \alpha_0 x_0$, если $\alpha \to \alpha_0$, $x \to x_0$. Означает, что для любой окрестности $U(\alpha_0 x_0)$ существует $ \varepsilon > 0$ и существует $U(x_0): |\alpha - \alpha_0| < \varepsilon, x \in U(x_0) \Rightarrow \alpha x \in U(\alpha_0 x_0)$ | ||
* непрерывность сложения векторов: $x + y \to x_0 + y_0$, если $x \to x_0$, $y \to y_0$. Означает, что для любой окрестности $U(x_0 + y_0)$ существуют окрестности $U(x_0), U(y_0): \forall x \in U(x_0 \forall y \in U(y_0) \Rightarrow x + y \in U(x_0 + y_0)$. | * непрерывность сложения векторов: $x + y \to x_0 + y_0$, если $x \to x_0$, $y \to y_0$. Означает, что для любой окрестности $U(x_0 + y_0)$ существуют окрестности $U(x_0), U(y_0): \forall x \in U(x_0 \forall y \in U(y_0) \Rightarrow x + y \in U(x_0 + y_0)$. | ||
Строка 30: | Строка 30: | ||
{{Определение | {{Определение | ||
|definition= | |definition= | ||
− | $A$ '''радиальное''', если оно поглощает любую конечную систему точек. Для проверки радиальности достаточно проверить поглощение каждой конкретной точки. | + | $A$ '''радиальное/поглощающее''', если оно поглощает любую конечную систему точек. Для проверки радиальности достаточно проверить поглощение каждой конкретной точки. |
}} | }} | ||
Строка 38: | Строка 38: | ||
}} | }} | ||
− | TODO тут какая-то хурма про уравновешенность | + | {{TODO|t= тут какая-то хурма про уравновешенность}} |
{{Теорема | {{Теорема | ||
Строка 46: | Строка 46: | ||
# $\tau$ инвариантна относительно сдвигов: $\tau + x_0 = \tau$ | # $\tau$ инвариантна относительно сдвигов: $\tau + x_0 = \tau$ | ||
# существует база из радиальных уравновешенных окрестностей нуля | # существует база из радиальных уравновешенных окрестностей нуля | ||
− | # $\forall U(0) \exists U_1(0): U_1(0) + U_1(0) \subset U(0)$ | + | # $\forall U(0) \exists U_1(0): U_1(0) + U_1(0) \subset U(0)$ {{TODO|t= какой сакральный смысл у этого свойства?}} |
|proof= | |proof= | ||
В прямую сторону: | В прямую сторону: | ||
# Рассмотрим отображение $x \mapsto x + x_0$, то есть сдвиг на $x_0$. Это отображение взаимно однозначно, следовательно непрерывно, то есть если $G \in \tau$ (открыто), $G + x_0$ также открыто. То есть получили, что векторная топология инвариантна относительно сдвигов. | # Рассмотрим отображение $x \mapsto x + x_0$, то есть сдвиг на $x_0$. Это отображение взаимно однозначно, следовательно непрерывно, то есть если $G \in \tau$ (открыто), $G + x_0$ также открыто. То есть получили, что векторная топология инвариантна относительно сдвигов. | ||
− | # Установим, что можно создать базу окрестностей нуля, составляющую из радиально-уравновешенных множеств. $\lambda x \to 0, x \to 0, \lambda \to 0$, то есть $\forall U(0) \exists \delta > 0, W(0): |\lambda| \ge 0$(TODO тут вроде баг в конспекте) $x \in W(0) \Rightarrow \lambda x \in U(0) \Leftrightarrow \lambda W(0) \subset U(0) \Rightarrow \bigcup\limits_{|\lambda| < \delta} \lambda W(0) \subset U(0)$, где $\lambda W(0)$ — уравновешено и окрестность 0. | + | # Установим, что можно создать базу окрестностей нуля, составляющую из радиально-уравновешенных множеств. $\lambda x \to 0, x \to 0, \lambda \to 0$, то есть $\forall U(0) \exists \delta > 0, W(0): |\lambda| \ge 0$({{TODO|t= тут вроде был баг в конспекте, проверьте}}) $x \in W(0) \Rightarrow \lambda x \in U(0) \Leftrightarrow \lambda W(0) \subset U(0) \Rightarrow \bigcup\limits_{|\lambda| < \delta} \lambda W(0) \subset U(0)$, где $\lambda W(0)$ — уравновешено и окрестность 0. |
#: Для радиальности: $\forall x_0 \in X, \lambda \to 0, \lambda x_0 \to 0 x_0 = 0 \Rightarrow \forall U(0) \exists \delta > 0: |\lambda| < \delta, \lambda x_0 \in U(0)$. $x_0 \in {1 \over \lambda} U(0), |\lambda| \le \delta, \left| {1 \over \lambda} \right| \ge {1 \over \delta}$, то есть $U(0)$ поглощает $x_0$. | #: Для радиальности: $\forall x_0 \in X, \lambda \to 0, \lambda x_0 \to 0 x_0 = 0 \Rightarrow \forall U(0) \exists \delta > 0: |\lambda| < \delta, \lambda x_0 \in U(0)$. $x_0 \in {1 \over \lambda} U(0), |\lambda| \le \delta, \left| {1 \over \lambda} \right| \ge {1 \over \delta}$, то есть $U(0)$ поглощает $x_0$. | ||
# $x + y \to 0, x, y \to 0 \forall U(0) \exists U_1(0) \Rightarrow U_1(0) + U_1(0) \subset U(0)$. | # $x + y \to 0, x, y \to 0 \forall U(0) \exists U_1(0) \Rightarrow U_1(0) + U_1(0) \subset U(0)$. | ||
Строка 62: | Строка 62: | ||
Непрерывность умножения: пусть $\lambda \to \lambda_0, x \to x_0$, покажем что $\lambda x \to \lambda_0 x_0$. Пусть $\lambda = \lambda_0 + \alpha, \alpha \to 0$, $x = x_0 + u, u \to 0$. Тогда $\lambda x = (\lambda_0 + \alpha) (x_0 + u) = \lambda_0 x_0 + (\lambda_0 u + \alpha x_0 + \alpha u)$. Покажем, что вторая скобка стремится к нулю. | Непрерывность умножения: пусть $\lambda \to \lambda_0, x \to x_0$, покажем что $\lambda x \to \lambda_0 x_0$. Пусть $\lambda = \lambda_0 + \alpha, \alpha \to 0$, $x = x_0 + u, u \to 0$. Тогда $\lambda x = (\lambda_0 + \alpha) (x_0 + u) = \lambda_0 x_0 + (\lambda_0 u + \alpha x_0 + \alpha u)$. Покажем, что вторая скобка стремится к нулю. | ||
− | TODO дальше ничего что-то не понимаю, запилите кто-нибудь,а? | + | {{TODO|t= дальше ничего что-то не понимаю, запилите кто-нибудь,а?}} |
}} | }} | ||
Строка 91: | Строка 91: | ||
|author=Колмогоров | |author=Колмогоров | ||
|statement= | |statement= | ||
− | [[Хаусдорфово]] ТВП нормируемо тогда и только тогда, когда у нуля есть ограниченная выпуклая окрестность. (TODO: к чему это?) | + | [[Хаусдорфово]] ТВП нормируемо тогда и только тогда, когда у нуля есть ограниченная выпуклая окрестность. ({{TODO|t=: к чему это?)}} |
|proof= | |proof= | ||
В прямую сторону: если ТВП нормируемо, то $V_r = \{ x : \| x \| \le 1 \}$ | В прямую сторону: если ТВП нормируемо, то $V_r = \{ x : \| x \| \le 1 \}$ | ||
− | TODO | + | {{TODO|t= далее я что-то не особенно осознал, что происходит(}} |
− | В обратную: пусть $V$ — ограниченная выпуклая окрестность нуля. $W$ — радиальная закр. (TODO что значит закр.?) окрестность 0: $W \subset V$, $\mathrm{Cov} W $ — выпуклая оболочка, $V$ — выпуклая, $\mathrm{Cov} W \subset V$, $\mathrm{Cov} W$ — радиальное закр. множество, так как $W$ — такое же. Из ограниченности $V$ следует ограниченность $\mathrm{Cov} W$. | + | В обратную: пусть $V$ — ограниченная выпуклая окрестность нуля. $W$ — радиальная закр. ({{TODO|t= что значит закр.?}}) окрестность 0: $W \subset V$, $\mathrm{Cov} W $ — выпуклая оболочка, $V$ — выпуклая, $\mathrm{Cov} W \subset V$, $\mathrm{Cov} W$ — радиальное закр. множество, так как $W$ — такое же. Из ограниченности $V$ следует ограниченность $\mathrm{Cov} W$. |
− | То есть, мы построили $V^* = \mathrm{Cov} W$ — радиальное закр. выпуклую TODO пшшш. $V^* \to p_{V^*}$ — функционал Минковского — полунорма. $V^*$ ограничено, тогда $\{ {1 \over n} V^* \}$ — база окрестностей 0. Так как пространство Хаусдорфово, то $\bigcap\limits_{n=1}^{\infty} {1 \over n} V^* = \{0\} \Rightarrow p_{V^*}(x) = 0 \Rightarrow x = 0$, то есть $p_{V^*}$ — норма, а $\{ {1 \over n} V^*\}$ — база окрестностей нуля, нормируемых функционалом Минковского. | + | То есть, мы построили $V^* = \mathrm{Cov} W$ — радиальное закр. выпуклую {{TODO|t= пшшш.}} $V^* \to p_{V^*}$ — функционал Минковского — полунорма. $V^*$ ограничено, тогда $\{ {1 \over n} V^* \}$ — база окрестностей 0. Так как пространство Хаусдорфово, то $\bigcap\limits_{n=1}^{\infty} {1 \over n} V^* = \{0\} \Rightarrow p_{V^*}(x) = 0 \Rightarrow x = 0$, то есть $p_{V^*}$ — норма, а $\{ {1 \over n} V^*\}$ — база окрестностей нуля, нормируемых функционалом Минковского. |
}} | }} | ||
Версия 03:13, 7 января 2013
<wikitex>
Рассмотрим множество $f: [0, 1] \to \mathbb{R}$. Множество таких функций образуют линейное пространство. Если определять предел в поточечном смысле, операции сложения и умножения на число в этом пространстве непрерывны. Мотивация введения топологических векторных пространств — обобщение этой ситуации на абстрактный случай.
Определение: |
Топологическое векторное пространство — линейное пространство, наделенной такой топологией, что операции сложения векторов и умножения на скаляр в ней непрерывны в этой топологии, то есть:
|
В ситуации $f: [0, 1] \to \mathbb{R}$, когда предел определен поточечно, если $\forall 0 \le t_1 < \dots < t_n \le 1, \forall \varepsilon_1 \dots \varepsilon_n > 0$ рассмотреть $U_{t_1 \dots t_n} (\varepsilon_1 \dots \varepsilon _n) = \{ f \mid \forall j: |f(t_j)| < \varepsilon_j \}$, объявить их окрестностями нулевой функции — в такой базе окрестности нуля функции будут непрерывны и предел будет поточечным.
Как охарактеризовать векторную топологию? Пусть $X$ — линейное пространство, $A, B \subset X$, тогда определим
- $A + B = \{ a + b \mid a \in A, b \in B\}
$ $\alpha A = \{ \alpha a \mid a \in A \}$ Заметим, что $2 A \subset A + A$, но обратное не верно.
Определение: |
$A$ закругленное/уравновешенное, если $\forall \lambda: |
Определение: |
$A$ поглощает $B$, если $\exists \lambda_0 > 0: \forall \lambda: |
Определение: |
$A$ радиальное/поглощающее, если оно поглощает любую конечную систему точек. Для проверки радиальности достаточно проверить поглощение каждой конкретной точки. |
Определение: |
$A$ выпуклое, если $\forall x, y \in A \forall 0 \le \alpha \le 1: \alpha x + \beta y \in A$, то есть множество содержит отрезок, соединяющий любые два его элемента. |
TODO: тут какая-то хурма про уравновешенность
Теорема (характеристика векторной топологии): |
$\tau$ — векторная топология на $X$ тогда и только тогда, когда:
|
Доказательство: |
В прямую сторону:
|
Любое НП является частным случаем ТВП. Обратное в общем случае неверно, в связи с чем возникает вопрос о том, в каком случае ТВП можно нормировать. Ответ на него дает понятие функционала Минковского.
Определение: |
Пусть $X$ — линейное пространство, $M$ — радиальное подмножество, тогда функционал Минковского $p_{\mu}$ определяется как $p_{\mu}(x) = \inf \{ \lambda > 0 \mid x \in \lambda M\}$. |
Заметим, что если $M, N$ — радиальны и $M \subset N$, то $p_N(x) \le p_M(x)$.
Пример:
- $X$ — НП, $V_1 = \{ x \mid \|x\| < 1\}, p_{V_1}(x) = \|x\|$, сдедовательно, норма — частный случай функционала Минковского.
Утверждение: |
Если $M$ — закругленное радиальное выпуклое множество, $p_M(X)$ — полунорма на $X$. |
$p_M(x + y) \le p_M(x) + p_M(y)$ $\exists \lambda > 0 \exists \lambda_1, \lambda_2: p_M(x) < \lambda_1 < p_M(x) + \varepsilon$, $p_M(y) < \lambda_2 < p_M(y) + \varepsilon$, $x \in \lambda_1 M, y \in \lambda_2 M \Rightarrow {x \over \lambda_1}, {y \over \lambda_2} \in M$. Рассмотрим $\alpha = {\lambda_1 \over \lambda_1 + \lambda_2}, \beta = {\lambda_2 \over \lambda_1 + \lambda_2}$, заметим, что $\alpha + \beta = 1$, из выпуклости получим, что $\alpha {x \over \lambda_1} + \beta {y \over \lambda_2} \in M \Rightarrow {x + y \over \lambda_1 + \lambda_2} \in M \Rightarrow x + y \in (\lambda_1 + \lambda_2) M$, то есть $ p_M(x + y) < \lambda_1 + \lambda_2 < (p_M(x) + p_M(y) + 2 \varepsilon $, сделав предельный переход, получим $p_M(x + y) \le p_M(x) + p_M(y)$. $p_M(\lambda x) = |
Теорема (Колмогоров): |
Хаусдорфово ТВП нормируемо тогда и только тогда, когда у нуля есть ограниченная выпуклая окрестность. (
TODO: : к чему это?) |
Доказательство: |
В прямую сторону: если ТВП нормируемо, то $V_r = \{ x : \ |
</wikitex>