Избыточное кодирование, код Хэмминга — различия между версиями
(→Определение и устранение ошибок в общем случае) |
Martoon (обсуждение | вклад) (Оптимизация памяти) |
||
Строка 29: | Строка 29: | ||
Легко понять, что если в одном бите из строки допущена ошибка, то с помощью дописанных <tex>k</tex> пар бит можно точно определить, какой именно бит ошибочный. Это объясняется тем, что каждая пара определяет один бит номера ошибочного бита в строке. Всего пар <tex>k</tex>, следовательно мы имеем <tex>k</tex> бит номера ошибочного бита, что вполне достаточно: общее число бит строки не превосходит <tex>2^k</tex>. | Легко понять, что если в одном бите из строки допущена ошибка, то с помощью дописанных <tex>k</tex> пар бит можно точно определить, какой именно бит ошибочный. Это объясняется тем, что каждая пара определяет один бит номера ошибочного бита в строке. Всего пар <tex>k</tex>, следовательно мы имеем <tex>k</tex> бит номера ошибочного бита, что вполне достаточно: общее число бит строки не превосходит <tex>2^k</tex>. | ||
− | + | Теперь заметим, что в случае наличия ошибки в исходной строке, ровно один бит в каждой паре будет равен единице. Тогда нам достаточно хранить только один бит из пары, при этом потребуется добавить ещё бит, отвечающий за местонахождение ошибки - в исходной или добавленной части, пусть он будет равен <tex>xor</tex>'у всех исходных битов (заметим, что в этом случае этот бит <tex>\oplus</tex> бит из пары = второй бит из пары, потому вторые биты в парах не нужны). | |
− | |||
== Определение и устранение ошибок в общем случае == | == Определение и устранение ошибок в общем случае == | ||
Пусть <tex>\Sigma</tex> — исходный алфавит, <tex>C: \Sigma \to B^m</tex> — кодирование, <tex>B=(0,1)</tex> | Пусть <tex>\Sigma</tex> — исходный алфавит, <tex>C: \Sigma \to B^m</tex> — кодирование, <tex>B=(0,1)</tex> |
Версия 21:19, 12 января 2013
Избыточное кодирование - вид кодирования, использующий избыточное количество информации с целью последующего контроля целостности данных при записи/воспроизведении информации или при её передаче по линиям связи.
Содержание
Код, определяющий одну ошибку
Увеличив объем кода на 1 бит, можно получить возможность определять при передаче наличие одной ошибки. Для этого к коду нужно добавить бит
: , такой, чтобы сумма всех единиц была четной. В случае, если контрольная сумма окажется нечетной, следует отправить запрос на повторную посылку элемента, в котором была обнаружена ошибка. Такое кодирование применяется только если вероятность ошибки крайне мала, например, в оперативной памяти компьютера.Кодирование Хэмминга
Кодирование Хэмминга предусматривает как возможность обнаружения ошибки, так и возможность её исправления. Рассмотрим простой пример
закодируем четыре бита: . Полученный код будет иметь длину 8 бит и выглядеть следующим образом: Рассмотрим табличную визуализацию кода:Как видно из таблицы, даже если один из битов
передался с ошибкой, содержащие его -суммы не сойдутся. Итого, зная строку и столбец в проиллюстрированной таблице можно точно исправить ошибочный бит.По аналогичному принципу можно закодировать любое число бит. Пусть мы имеем исходную строку длиной в
бит. Для получения её кода добавим к ней пар бит по следующему принципу:- Первая пара: сумма четных бит и сумма нечетных бит
- Вторая пара: сумма тех бит, в чьем номере второй бит с конца ноль и сумма тех бит, в чьем номере второй бит с конца единица
...
Легко понять, что если в одном бите из строки допущена ошибка, то с помощью дописанных пар бит можно точно определить, какой именно бит ошибочный. Это объясняется тем, что каждая пара определяет один бит номера ошибочного бита в строке. Всего пар , следовательно мы имеем бит номера ошибочного бита, что вполне достаточно: общее число бит строки не превосходит .
Теперь заметим, что в случае наличия ошибки в исходной строке, ровно один бит в каждой паре будет равен единице. Тогда нам достаточно хранить только один бит из пары, при этом потребуется добавить ещё бит, отвечающий за местонахождение ошибки - в исходной или добавленной части, пусть он будет равен
'у всех исходных битов (заметим, что в этом случае этот бит бит из пары = второй бит из пары, потому вторые биты в парах не нужны).Определение и устранение ошибок в общем случае
Пусть
— исходный алфавит, — кодирование,Расстояние Хэмминга между двумя кодами.
Определим , ,
Тогда легко понять, что код, полученный преобразованием