Гильбертовы пространства — различия между версиями
Smolcoder (обсуждение | вклад) |
|||
| Строка 16: | Строка 16: | ||
В УП выполняется [[Нормированные пространства#Гильбертовы пространства | неравенство Шварца]] : <tex>|\langle x, y\rangle| \le \sqrt{\langle x, x \rangle} \sqrt{\langle y, y \rangle}</tex> | В УП выполняется [[Нормированные пространства#Гильбертовы пространства | неравенство Шварца]] : <tex>|\langle x, y\rangle| \le \sqrt{\langle x, x \rangle} \sqrt{\langle y, y \rangle}</tex> | ||
| − | УП — частный случай [[нормированных пространств]]: можно ввести норму как <tex>\| x \| = \sqrt{\langle x, x \rangle}</tex>, неравенство Шварца используется для доказательства того, что третья аксиома нормы выполняется. | + | УП — частный случай [[Нормированные пространства | нормированных пространств]]: можно ввести норму как <tex>\| x \| = \sqrt{\langle x, x \rangle}</tex>, неравенство Шварца используется для доказательства того, что третья аксиома нормы выполняется. |
Для нормы, порожденной скалярным произведением выполняется '''равенство параллелограмма''': <tex>\| x + y \|^2 + \| x - y \|^2 = 2 \| x \|^2 + 2 \| y \|^2</tex>. | Для нормы, порожденной скалярным произведением выполняется '''равенство параллелограмма''': <tex>\| x + y \|^2 + \| x - y \|^2 = 2 \| x \|^2 + 2 \| y \|^2</tex>. | ||
Версия 17:29, 13 января 2013
| Определение: |
Скалярным произведением в действительном линейном пространстве называется функция , удовлетворяющяя следующим аксиомам:
|
Пример:
- , то есть множество бесконечных числовых последовательностей, сумма квадратов которых сходится (). , сходимость этого ряда и аксиомы скалярного произведения доказаны тут.
В УП выполняется неравенство Шварца :
УП — частный случай нормированных пространств: можно ввести норму как , неравенство Шварца используется для доказательства того, что третья аксиома нормы выполняется.
Для нормы, порожденной скалярным произведением выполняется равенство параллелограмма: .
| Определение: |
| Гильбертовым пространством называют Банахово пространство, в котором норма порождена скалярным произведением. |
| Теорема: |
Пусть — выпуклое замкнутое множество в , тогда . называется элементом наилучшего приближения |
| Доказательство: |
| Наилучшее приближение в линейных нормированных пространствах |
| Определение: |
| Говорят, что два элемента гильбертова пространства перпендикулярны (), если |
| Определение: |
| Пусть — подпространство в , тогда ортогональным дополнением называется . |
| Теорема: |
Пусть — подпространство в , — его ортогональное дополнение. Тогда для любого существует единственное представление , где и . |
| Доказательство: |
|
Доказывалось ранее. TODO: Где именно? Было ли вообще это утверждение доказано в курсе матана? |
| Лемма (Рисc, о почти перпендикуляре): |
Пусть — НП, а - собственное (то есть не совпадающее с ) подпространство , тогда (где ) |
| Доказательство: |
|
Если — строго подмножество , то существует .
Пусть , тогда , то есть . — замкнутое, следовательно, , то есть получили противоречие и . , тогда , . Рассмотрим . лежит в так как оно замкнуто, тогда числитель будет больше , а знаменатель — меньше , то есть дробь будет больше . Таким образом, для любого из подобрали из , что не меньше , а тогда и будет не меньше по свойствам инфимума. |
Смысл данной леммы состоит в том, что в произвольном нормированном пространстве для сколь угодно малого и произвольного подпространства найдется элемент, который будет к нему перпендикулярен с точностью до .
| Теорема (некомпактность шара в бесконечномерном пространстве): |
Если - бесконечномерное НП, то единичный шар в нем не компактен. |
| Доказательство: |
|
Возьмем , — собственное подпространство , применим лемму Рисса, возьмем , существует , заметим, что окажется в . , опять применим лемму Рисса, существует , будет в . Продолжаем так же для . Процесс никогда не завершится, так как — бесконечномерное и не может быть линейной оболочкой конечного числа векторов. Таким образом построили бесконечную систему точек в , но из которой нельзя выделить сходящуюся подпоследовательность, так как , следовательно, не компактно. |
В Гильбертовых пространствах важно понятие ортонормированной системы точек: .
Рассмотрим для точки абстрактный ряд Фурье , называют абстрактными коэффициентами Фурье.
Теорема: . TODO: найти доказательство, где-то было оно
| Теорема (Бессель, неравенство Бесселя): |
| Доказательство: |
|
Для некоторого набора коэффициентов рассмотрим скалярное произведение:
. Теперь, пусть , имеем , устремив к бесконечности, получим требуемое. |
Интересно рассмотреть, когда для всех неравенство превращается в равенство.
| Теорема (TODO равенство Парсеваля вроде?): |
В неравенстве Бесселя для любого будет равенство тогда и только тогда, когда ортонормированная система точек, по которым строятся коэффициенты Фурье, полная или замкнутая.
TODO: пшшш, что-то неразборчивое |
| Доказательство: |
| ??? |
| Теорема (Рисс-Фишер): |
Пусть - ортонормированная система в гильбертовом пространстве , . Тогда и выполняется равенство Парсеваля: |
| Доказательство: |
| TODO: почему-то в конспекте только формулировка, док-ва нет |
TODO: далее идет что-то бредовое
Вопрос: какое топологическое свойство характеризует существование базиса: замкнутость ОНС? Достаточно требовать, чтобы было сепарабельным: — счетное всюду плотное.
, следовательно, надо превратить в ОНС, чтобы линейная оболочка совпала. ОНС строится процедурой Грама-Шмидта.