Алгоритм "Вперед-Назад" — различия между версиями
Gfv (обсуждение | вклад) (alpha 1) |
Gfv (обсуждение | вклад) |
||
Строка 3: | Строка 3: | ||
За <tex>T</tex> шагов в этой модели получилась последовательность наблюдений <tex>O_{1,T} = {o_1, ..., o_T}</tex>. | За <tex>T</tex> шагов в этой модели получилась последовательность наблюдений <tex>O_{1,T} = {o_1, ..., o_T}</tex>. | ||
− | Алгоритм "вперед-назад" позволяет найти в скрытой Марковской модели вероятность попадания в состояние <tex>s_i</tex> на <tex>t</tex>-ом | + | Алгоритм "вперед-назад" позволяет найти в скрытой Марковской модели вероятность попадания в состояние <tex>s_i</tex> на <tex>t</tex>-ом шаге при последовательности наблюдений <tex>O</tex>. |
=== Вычисление === | === Вычисление === | ||
Пусть в момент <tex>t</tex> мы оказались в состоянии <tex>i</tex>: <tex>X_t = i</tex>. Назовем <tex>\alpha_{i}(t)</tex> вероятность того, что при этом во время переходов образовалась последовательность наблюдений <tex>O_{1,t-1}</tex>, а <tex>\beta_{i}(t)</tex> — вероятность того, что после этого состояния мы будем наблюдать последовательность наблюдений <tex>O_{t,T}</tex>: | Пусть в момент <tex>t</tex> мы оказались в состоянии <tex>i</tex>: <tex>X_t = i</tex>. Назовем <tex>\alpha_{i}(t)</tex> вероятность того, что при этом во время переходов образовалась последовательность наблюдений <tex>O_{1,t-1}</tex>, а <tex>\beta_{i}(t)</tex> — вероятность того, что после этого состояния мы будем наблюдать последовательность наблюдений <tex>O_{t,T}</tex>: | ||
− | <tex | + | <tex>\alpha_{i}(t) \overset{def}{=} P(O_{1, t-1} | X_t = i) \\ |
\beta_i(t) \overset{def}{=} P(O_{t,T} | X_t = 1)</tex> | \beta_i(t) \overset{def}{=} P(O_{t,T} | X_t = 1)</tex> | ||
Нам требуется найти <tex>P(X_t = i | O) = P(X_t = i | O_{1,t-1} \cap O_{t,T})</tex>. Поскольку будущее Марковской цепи не зависит от прошлого, мы можем утверждать, что вероятность того, что мы будем наблюдать события <tex>O_{t,n}</tex> не зависит от того, что в прошлом мы наблюдали последовательность <tex>O_{1,t-1}</tex>, и, следовательно: | Нам требуется найти <tex>P(X_t = i | O) = P(X_t = i | O_{1,t-1} \cap O_{t,T})</tex>. Поскольку будущее Марковской цепи не зависит от прошлого, мы можем утверждать, что вероятность того, что мы будем наблюдать события <tex>O_{t,n}</tex> не зависит от того, что в прошлом мы наблюдали последовательность <tex>O_{1,t-1}</tex>, и, следовательно: | ||
− | <tex | + | <tex>P(X_t = i | O_{1,t-1} \cap O_{t,T}) \propto P(X_t = i | O_{1,t-1}) \cdot P(X_t = i | O_{t,T}) = \alpha_{i}(t) \cdot \beta_{i}(t)</tex> |
+ | |||
+ | |||
+ | [[Категория:Дискретная математика и алгоритмы]] | ||
+ | [[Категория: Марковские цепи ]] |
Версия 21:14, 13 января 2013
Пусть дана скрытая Марковская модель
, где - состояния, - возможные события, -- начальные вероятности, -- матрица переходов, а -- вероятность наблюдения события после перехода в состояние .За
шагов в этой модели получилась последовательность наблюдений .Алгоритм "вперед-назад" позволяет найти в скрытой Марковской модели вероятность попадания в состояние
на -ом шаге при последовательности наблюдений .Вычисление
Пусть в момент
мы оказались в состоянии : . Назовем вероятность того, что при этом во время переходов образовалась последовательность наблюдений , а — вероятность того, что после этого состояния мы будем наблюдать последовательность наблюдений :
Нам требуется найти
. Поскольку будущее Марковской цепи не зависит от прошлого, мы можем утверждать, что вероятность того, что мы будем наблюдать события не зависит от того, что в прошлом мы наблюдали последовательность , и, следовательно: